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Abstract
Introduction
To examine whether the mutagenic potential of lung exposure to air-borne environmental mutagens is age dependent, we administered 1 mg of benzo[a]pyrene intratracheally to 11- and 24-month old (middle-aged and old, respectively) gpt delta transgenic mice that harbor gpt (guanine phosphoribosyltransferase) genes integrated in the genomic DNA as a target for mutation detection, and then analyzed the benzo[a]pyrene-induced and spontaneous in vivo mutations and mutation spectrum in the lungs.

Results
The mutant frequencies in the lungs of the 11- and 24-month–old control (vehicle-treated) gpt delta mice were 1.14 ± 0.22 × 10−5 and 1.00 ± 0.20 × 10−5, respectively, which are significantly higher than that observed for the control 3-month–old (young) mice (0.59 ± 0.13 × 10−5) in our previous studies, indicating that spontaneous mutation in the lung increases with age. The mutant frequencies in 11- and 24-month–old mice treated with benzo [a] pyrene were 1.5- and 2.3-fold, respectively, that of the age-matched control mice, and 4.3-fold that of the 3-month–old mice in our previous studies. Analysis of mutation spectra showed that both G:C to A:T transitions and G:C to T:A transversions were predominant in the lungs of control mice at all ages. In benzo [a] pyrene-treated mice in our previous studies, G:C to T:A transversions were the predominant type of mutation (55 %) at 3 months. Here we found that their frequency was dramatically reduced to 18 % by 24 months, and the G:C to A:T transitions became the predominant type of mutation in 24-month–old mice (41 % [16 % at CpG sites]).

Conclusions
Our findings suggest that susceptibility to benzo[a]pyrene is highest in young mice and is elevated again in old age. The elevation of G:C to A:T transitions was observed following benzo [a] pyrene administration in the lungs of aged mice, and accelerated cytidine deamination is speculated to contribute to this elevation.
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Introduction
Accumulation of mutations in the genome is considered to be at least in part responsible for the phenomenon of aging. The increase in genomic mutation frequency with age is believed to be a factor in the age-related functional decline of homeostasis and resistance to stressors, which leads to diseases such as cancer [1]. However, it remains to be clarified how vulnerable groups, such as young and old individuals, are susceptible to environmental mutagens and related environmental stressors. For instance, young (3-month–old) rats are more susceptible than adult (11-month–old) rats to acrylamide-induced testicular genotoxicity [2].
Transgenic rodents that harbor exogenous genes integrated in the genomic DNA, as a target for mutation detection, are a useful system for the study of in vivo somatic mutations caused by environmental mutagens. The widely used transgenic lines, Muta mouse, Big Blue rodents, and gpt delta rodents, harbor the Escherichia coli genes, lacZ (β-galactosidase), lacI (lac repressor), and gpt (guanine phosphoribosyltransferase), respectively [3]. Use of these model animals to evaluate the level of mutations accumulated in aged animals has revealed that the mutation frequency increases spontaneously with age in various organs including liver, spleen, small intestine, kidney, and heart [4–10], but the magnitude of the increase is different among the organs.
From the viewpoint of interactions between the genome and the environment, the lung is a unique organ. In the lung, air-borne environmental mutagens directly contact the pulmonary epithelial cells and induce mutations in the genomic DNA, whereas mutagens reach most organs via the blood circulation system. Therefore, here we chose to use the lung to address how the susceptibility to environmental mutagens differs among age groups. We selected to use benzo[a]pyrene (B[a]P), because it is a common air-borne mutagen generated by the burning of fossil fuels. Previously, we reported that B[a]P (0.5–2 mg per animal) induces a linear dose-dependent increase in mutation frequency in the lungs of 3-month–old gpt delta mice following a single intratracheal instillation [11]. Here, to determine whether the magnitude of the elevation of in vivo mutant frequency following treatment with an environmental mutagen is age dependent, we examined the mutant frequency and types of mutations in the gpt gene in B[a]P-instilled lungs of 11- and 24-month–old gpt delta mice (representative of middle-aged, and old animals, respectively), comparing with those in 3-month–old gpt delta mice (representative of young animals).

Materials and methods
Treatment of mice
Male gpt delta mice (9-weeks old; body weight, ~25 g), which carry approximately 80 copies of lambda EG10 DNA on each chromosome 17 on a C57BL/6 J background [12], were obtained from Japan SLC (Shizuoka, Japan). The mice were maintained at 24 to 26 °C with 55 % to 75 % humidity and a 12-h light–dark cycle, and were fed CA-1 diet (Japan Clea Co., Tokyo, Japan) with water ad libitum, in the specific-pathogen–free (SPF) animal facility of the National Institute for Environmental Studies. The animals were anesthetized with 4 % halothane (Hoechst Japan, Tokyo, Japan) in a desiccator until they did not respond to a tactile stimulus. A single dose of B[a]P (1 mg, Wako Pure Chemical Industries, Osaka, Japan) dissolved in 50 μL of tricaprylin (Sigma-Aldrich, St. Louis, MO, USA) was intratracheally instilled via a polyethylene tube [11, 13]. Control mice were treated with 50 μL of vehicle (tricaprylin) alone; this dose of B[a]P is within the range (0.5–2 mg) that causes a linear dose-dependent increase in mutant frequency in the lungs of 3-month–old gpt delta mice [11]. The mice were sacrificed 14 days after the administration, and their lungs were removed, frozen in liquid nitrogen, and stored at −80 °C until the DNA was isolated. The animal studies were approved by the Animal Care and Use Committee of National Institute for Environmental Studies.

DNA isolation and in vitro packaging of DNA
High-molecular-weight genomic DNA was extracted from the lungs by using the RecoverEase DNA Isolation Kit (Agilent Technologies, Santa Clara, CA, USA). Lambda EG10 phages containing the gpt gene were recovered from the genomic DNA by using Transpack Packaging Extract (Agilent Technologies).

Mutation assay and DNA sequencing analysis of the gpt gene in 6-TG-resistant colonies
The gpt mutagenesis assay was performed according to previously described methods [14]. To convert the phage DNA into plasmids, E. coli strain YG6020 expressing Cre recombinase was infected with the rescued phage. The bacteria were then spread onto M9 salts plates containing chloramphenicol (Cm) and 6-thioguanine (6-TG) [14], and incubated for 72 h at 37 °C for selection of the colonies harboring a plasmid carrying the chloramphenicol acetyltransferase (cat) gene and a mutated gpt gene. The 6-TG-resistant colonies were streaked onto selection plates for confirmation of the resistant phenotype. The cells were then cultured in LB broth containing 25 mg/mL Cm at 37 °C and collected by centrifugation. The bacterial pellets were stored at −80 °C until DNA sequencing analysis was performed. Mutant frequencies for the gpt gene were calculated by dividing the number of colonies growing on M9 + Cm + 6-TG agar plates by the number of colonies growing on M9 + Cm agar plates. PCR and DNA sequencing analysis of 6-TG-resistant mutants were performed as previously reported [11].

Statistical analysis
All data are expressed as means ± SD. Statistical significance was evaluated by using Student’s t-tests. A statistical analysis of mutational spectra was performed by using the Adams-Skopek test [15, 16] and Chi-square test. P values less than 0.05 were considered to be statistically significant.


Results and discussion
Mutant frequencies in the lungs of B[a]P-treated gpt mice
To examine which age group is most susceptible to a common air-borne environmental mutagen, the mutant frequency and the mutation spectrum in the lungs of 11- and 24-month–old gpt delta mice (representative of middle-aged and old animals, respectively) following treatment with B[a]P and age-matched controls (vehicle-treated) were analyzed and compared with our published data for 3-month–old mice (representative of young animals) [11, 17, 18].
The mutant frequencies in the lungs of 11- and 24-month–old control (vehicle-treated) mice were 1.14 ± 0.22 × 10−5 and 1.00 ± 0.20 × 10−5, respectively. In contrast, the mutant frequency in the lungs of 3-month–old control mice was 0.59 ± 0.13 × 10−5 according to the combined data from our previous reports [11, 17, 18]. Consistent with previously reported observations in various organs such as liver and spleen [10, 19, 20], these observations indicate that the frequency of spontaneous mutants in the lung increased with age.
A single administration of 1 mg of B[a]P elevated the mutant frequency in 11- and 24-month–old mice to 1.68 ± 0.19 × 10−5 and 2.25 ± 0.54 × 10−5, respectively, which was 1.5- and 2.3-fold the mutant frequency in the respective age-matched control mice (Table 1). We previously reported that B[a]P instillation to the lungs of 3-month–old mice elevated the mutant frequency to 2.52 ± 0.33 × 10−5 [11] which was 4.3-fold the frequency observed in the 3-month–old control mice in our previous studies [11, 17, 18].Table 1Mutant frequencies in B[a]P-instilled and control lung of gpt delta mice


	B[a]P
	Time
	ID of animals
	Number of colonies
	Mutant frequency
	Average mutant frequency ± SD

	(mg)
	(months)
	 	Mutant
	Total
	(×10−5)
	(×10−5)

	0
	3
	1a
                            
	5
	800,800
	0.62
	 
	 	 	2a
                            
	5
	1,113,600
	0.45
	 
	 	 	3a
                            
	5
	702,400
	0.71
	 
	 	 	4b
                            
	3
	441,600
	0.68
	 
	 	 	5b
                            
	3
	643,200
	0.47
	 
	 	 	6b
                            
	3
	828,000
	0.36
	 
	 	 	7c
                            
	7
	1,016,000
	0.69
	 
	 	 	8c
                            
	6
	836,800
	0.72
	 
	 	 	9c
                            
	3
	524,200
	0.57
	 
	 	 	Total
	40
	6,906,600
	 	0.59 ± 0.13

	 	11
	1
	3
	311,000
	0.96
	 
	 	 	2
	5
	530,000
	0.94
	 
	 	 	3
	30
	2,389,000
	1.26
	 
	 	 	4
	28
	1,915,000
	1.46
	 
	 	 	5
	34
	3,117,000
	1.09
	 
	 	 	Total
	100
	8,262,000
	 	1.14 ± 0.22††
                            

	 	24
	1
	12
	1,408,000
	0.85
	 
	 	 	2
	18
	1,464,000
	1.23
	 
	 	 	3
	14
	1,548,000
	0.90
	 
	 	 	Total
	44
	4,420,000
	 	1.00 ± 0.20†
                            

	ᅟ

	1
	3
	1 a
                            
	11
	499,200
	2.20
	 
	 	 	2 a
                            
	14
	556,800
	2.51
	 
	 	 	3 a
                            
	35
	1,225,600
	2.86
	 
	 	 	Total
	60
	2,281,600
	 	2.52 ± 0.33**

	 	11
	1
	11
	750,000
	1.47
	 
	 	 	2
	13
	700,000
	1.86
	 
	 	 	3
	14
	738,000
	1.90
	 
	 	 	4
	17
	1,061,000
	1.60
	 
	 	 	5
	27
	1,728,000
	1.56
	 
	 	 	Total
	82
	4,977,000
	 	1.68 ± 0.19*,††
                            

	 	24
	1
	13
	456,000
	2.85
	 
	 	 	2
	36
	1,996,000
	1.80
	 
	 	 	3
	17
	809,000
	2.10
	 
	 	 	Total
	66
	3,261,000
	 	2.25 ± 0.54*,
                            


*P < 0.01, **P < 0.001 for comparison between B[a]P-instilled mice and age-matched control mice

                        †
                        P < 0.01, ††
                        P < 0.001 for comparison to equivalently treated 3-month–old mice

                        a, b and cData from our previous studies ([11, 17, 18], respectively)



                
Our observations indicate that the order of the age groups in terms of highest to lowest fold of increase in mutant frequency in the lungs following instillation of B[a]P was 3-, 24-, and 11-month–old mice. These results suggest that young mice are the age-group most susceptible to B[a]P, which may be explained age-related changes of the mutant frequency by their relatively high level of DNA replicating activity and cell turnover rate [21] and/or perhaps higher levels of metabolic activation of B[a]P, as well as DNA repair activity, which promote the formation of B[a]P-DNA adducts, and that the susceptibility is elevated again in old age by several possible mechanisms, as discussed later. Age-dependent alteration in the metabolic activation of B[a]P has not been well-documented in the lung, but the activity of cytochrome 1A, a mono-oxygenase that catalyzes the metabolic activation of B[a]P, has been suggested to decline with age in the rat liver [22].

Characteristics of the gpt mutation spectrum
To analyze the age-dependent alterations in the mutation spectra of B[a]P-instilled and control lungs, we sequenced gpt mutants recovered from the lungs as shown in Table 2. We observed a significant difference between the mutation spectrum of the 24-month–old control mice studied here and that of the 3-month–old control mice we studied previously [11, 17, 18] (P < 0.05, Adams-Skopec test). In our published data from 3-month–old control mice, the most predominant type of base substitution was G:C to A:T transitions (45 % of total mutants), and a half of these transitions were induced at CpG sites (18 % of total mutants), while G:C to T:A (21 %) and G:C to C:G (16 %) transversions were also major base substitutions. Here, were found that the percentages of G:C to C:G transversions among total mutants were less in 11- and 24-month–old control mice than in 3-month–old control mice, but G:C to A:T transitions and G:C to T:A transversions were still predominant (35 % and 14 % of total mutants, respectively) in 24-month–old control mice (Table 2). In contrast, increased proportions of A:T to T:A transversions, A:T to C:G transversions, and base deletions were observed in the lungs of 24-month–old control mice compared with 3-month–old control mice. An increase in base substitutions at A:T has previously been reported in the intestine and spleen of 32-month–old lacZ plasmid transgenic mice, and DNA polymerase η was speculated to act as an A:T mutator in the spleen of aged animals [23]. Taken together, these results suggest that an increase in point mutations at A:T may be a common phenomenon in proliferative aged tissues.Table 2Classification of gpt mutations from the lung of B[a]P-instilled and control mice


	Type of mutation in the gpt gene
	Control
	B[a]P
	Control (months)
	B[a]P (months)

	All ages
	All ages
	3a
                            
	11
	24
	3b
                            
	11
	24

	 	Number
	%
	Number
	%
	Number
	%
	Number
	%
	Number
	%
	Number
	%
	Number
	%
	Number
	%

	Base substitution
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 
	Transition
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 
	G:C → A:T
	68
	39
	44
	26
	17
	45
	36
	39
	15
	35
	4
	10
	20
	25
	20
	41

	(at CpG site)
	(28)
	(16)
	(20)
	(12)
	(7)
	(18)
	(14)
	(15)
	(7)
	(16)
	(1)
	(2)
	(11)
	(13)
	(8)
	(16)

	A:T → G:C
	14
	8
	1
	1
	3
	8
	10
	11
	1
	2
	0
	0
	0
	0
	1
	2

	Transversion
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 
	G:C → T:A
	29
	17
	51
	30
	8
	21
	15
	16
	6
	14
	23
	55
	19
	24
	9
	18

	(at CpG site)
	(6)
	(3)
	(33)
	(19)
	(3)
	(8)
	(3)
	(3)
	(1)
	(2)
	(19)
	(45)
	(8)
	(10)
	(6)
	(12)

	G:C → C:G
	12
	7
	22
	13
	6
	16
	4
	4
	2
	5
	7
	17
	12
	15
	3
	6

	A:T → T:A
	12
	7
	7
	4
	1
	3
	6
	7
	5
	12
	0
	0
	4
	5
	3
	6

	A:T → C:G
	7
	4
	3
	2
	0
	0
	4
	4
	3
	7
	0
	0
	0
	0
	3
	6

	Deletion
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 
	−1
	18
	10
	22
	13
	3
	8
	9
	10
	6
	14
	4
	10
	14
	18
	4
	8

	>2
	6
	3
	5
	3
	0
	0
	2
	2
	4
	9
	0
	0
	2
	3
	3
	6

	Insertion
	6
	3
	11
	6
	0
	0
	5
	5
	1
	2
	2
	5
	6
	8
	3
	6

	Other
	1
	1
	4
	2
	0
	0
	1
	1
	0
	0
	2
	5
	2
	3
	0
	0

	Total
	173
	100
	170
	100
	38
	100
	92
	100
	43
	100
	42
	100
	79
	100
	49
	100



                        aCombined data of our previous studies [11, 17, 18]

                        bOur previous data [11]



                
We observed that there was a significant difference between the mutation spectra for both 3- and 11-month–old B[a]P-instilled mice (P < 0.05, Adams-Skopec test), and 3- and 24-month–old B[a]P-instilled mice (P < 0.01, Adams-Skopec test). In B[a]P-instilled groups, we reported previously that G:C to T:A transversions, a major base substitution induced by B[a]P administration, were the predominant type of mutation (55 %) in the lungs of 3-month–old mice in our previous study [11], but surprisingly in the aged mice, the percentage of these mutations was dramatically lowered to be 24 % and 18 % in 11- and 24-month–old mice, respectively (Table 2). In contrast, the percentage of G:C to A:T transitions was observed to increase in B[a]P-instilled lungs age-dependently, and they became the predominant type of mutation in 24-month–old mice (41 % [16 % at CpG sites]). As observed for control lungs, the percentage of G:C to C:G transversions in B[a]P-instilled lungs decreased with age.
The positions of spontaneous and B[a]P-induced gpt mutations are listed in Table 3. Among the mutated sequences isolated from the control mice, 6 gpt mutations (G:C to A:T transitions) at nucleotides 64, 86, 115, and 406 in 11-month–old mice, at nucleotide 110 in 4 and 24-month–old mice, and at nucleotide 417 in 24-month–old mice, were each observed in three or more mice. These positions therefore are potential hotspots, while G:C to A:T transitions at nucleotides 64 and 110 were reported to be sites of spontaneous mutation in gpt delta mice [24]. The G:C to A:T transitions at nucleotides 64 and 110 and the G:C to C:G transversion at nucleotide 340 were also hotspots in 11-month–old B[a]P-instilled mice. Regarding G:C to T:A transversions, we previously observed that nucleotides 115, 140, 143, 189, and 413 were hotspots for G:C to T:A transversions in B[a]P-instilled lungs of 3-month–old gpt delta mice [11], but these nucleotides were not hotspots for this base substitution in 11- and 24-month–old mice; rather the hotspots were nucleotides 402 and 406 in B[a]P-instilled lungs of 11-month–old mice, but there was no hotspot in 24-month–old mice.Table 3DNA sequence analysis of gpt mutations obtained from the lung of B[a]P-instilled and control mice


	Type of mutation
	Nucleo-tide #
	Sequence
	Change
	Amino acid change
	Number

	Control
	B[a]P

	Months
	Months

	3d
                            
	11
	24
	3e
                            
	11
	24

	Base substitution
	 	 	 	 	 	 	 	 	 	 	 	 
	Transition
	 	 	 	 	 	 	 	 	 	 	 	 
	G:C → A:T
	26
	tGg
	→
	tAg
	 	Trp
	→
	Stop
	 	 	1
	 	2a
                            
	1

	 	27
	tgG
	→
	tgA
	 	Trp
	→
	Stop
	 	 	1
	 	1
	 
	 	37
	Cag
	→
	Tag
	 	Gln
	→
	Stop
	 	 	1
	 	2
	1

	 	58
	Gca
	→
	Aca
	CpG
	Ala
	→
	Thr
	 	 	1
	 	 	 
	 	64
	Cga
	→
	Tga
	CpG
	Arg
	→
	Stop
	1
	5b
                            
	1
	 	5b
                            
	1

	 	86
	tGg
	→
	tAg
	 	Trp
	→
	Stop
	 	3b
                            
	 	1
	 	 
	 	87
	tgG
	→
	tgA
	 	Trp
	→
	Stop
	 	2a
                            
	 	 	 	 
	 	92
	gGc
	→
	gAc
	 	Gly
	→
	Asp
	 	2a
                            
	 	 	 	 
	 	110
	cGt
	→
	cAt
	CpG
	Arg
	→
	His
	5c
                            
	4
	3b
                            
	 	4b
                            
	6a
                            

	 	115
	Ggt
	→
	Agt
	CpG
	Gly
	→
	Ser
	1
	5b
                            
	2
	1
	2a
                            
	1

	 	116
	gGt
	→
	gAt
	 	Gly
	→
	Asp
	2
	2a
                            
	 	 	 	1

	 	128
	gGt
	→
	gAt
	 	Gly
	→
	Asp
	1
	2
	 	 	 	2

	 	176
	tGt
	→
	tAt
	 	Cys
	→
	Tyr
	 	 	 	 	 	1

	 	262
	Gat
	→
	Aat
	 	Asp
	→
	Asn
	1
	 	 	 	 	 
	 	274
	Gat
	→
	Aat
	 	Asp
	→
	Asn
	1
	 	1
	 	1
	 
	 	281
	gGt
	→
	gAt
	 	Gly
	→
	Asp
	 	 	 	 	 	1

	 	284
	gGt
	→
	gAt
	 	Gly
	→
	Asp
	 	 	 	 	 	1

	 	367
	Gat
	→
	Aat
	 	Asp
	→
	Asn
	 	 	 	 	1
	 
	 	401
	tGg
	→
	tAg
	 	Trp
	→
	Stop
	2a
                            
	4a
                            
	 	 	 	1

	 	402
	tgG
	→
	tgA
	 	Trp
	→
	Stop
	 	 	 	1
	 	1

	 	406
	Gaa
	→
	Aaa
	 	Glu
	→
	Lys
	 	3b
                            
	 	 	 	 
	 	416
	tGg
	→
	tAg
	 	Trp
	→
	Stop
	 	1
	 	 	 	 
	 	417
	tgG
	→
	tgA
	 	Trp
	→
	Stop
	1
	1
	4b
                            
	 	 	 
	 	418
	Gat
	→
	Aat
	 	Asp
	→
	Asn
	2a
                            
	2a
                            
	 	1
	2a
                            
	2a
                            

	A:T → G:C
	25
	Tgg
	→
	Cgg
	 	Trp
	→
	Arg
	1
	 	 	 	 	 
	 	41
	aTc
	→
	aCc
	 	Ile
	→
	Thr
	1
	 	 	 	 	 
	 	56
	cTc
	→
	cCc
	 	Leu
	→
	Pro
	1
	8a
                            
	1
	 	 	 
	 	149
	cTg
	→
	cCg
	 	Leu
	→
	Pro
	 	1
	 	 	 	1

	 	415
	Tgg
	→
	Cgg
	 	Trp
	→
	Arg
	 	1
	 	 	 	 
	Transversion
	 	 	 	 	 	 	 	 	 	 	 	 	 
	G:C → T:A
	3
	atG
	→
	atT
	 	Met
	→
	Ile
	 	1
	 	 	 	 
	 	7
	Gaa
	→
	Taa
	CpG
	Glu
	→
	Stop
	 	1
	 	 	 	 
	 	15
	taC
	→
	taA
	 	Tyr
	→
	Stop
	 	1
	 	 	 	 
	 	26
	tGg
	→
	tTg
	 	Trp
	→
	Leu
	 	 	 	 	 	1

	 	37
	Cag
	→
	Aag
	 	Gln
	→
	Lys
	 	 	1
	 	 	 
	 	79
	Gaa
	→
	Taa
	 	Glu
	→
	Stop
	 	 	 	 	1
	 
	 	92
	gGc
	→
	gTc
	 	Gly
	→
	Val
	 	 	 	 	1
	 
	 	101
	gCc
	→
	gAc
	 	Ala
	→
	Asp
	 	 	 	 	1
	 
	 	108
	agC
	→
	agA
	 	Ser
	→
	Arg
	 	 	 	2
	 	 
	 	110
	cGt
	→
	cTt
	CpG
	Arg
	→
	Leu
	 	 	 	 	 	1

	 	115
	Ggt
	→
	Tgt
	CpG
	Gly
	→
	Cys
	 	 	 	2
	1
	2a
                            

	 	116
	gGt
	→
	gTt
	 	Gly
	→
	Val
	 	2a
                            
	 	 	 	1

	 	140
	gCg
	→
	gAg
	CpG
	Ala
	→
	Glu
	1
	 	 	1
	3a
                            
	1

	 	143
	cGt
	→
	cTt
	CpG
	Arg
	→
	Leu
	 	 	 	8a
                            
	1
	 
	 	145
	Gaa
	→
	Taa
	 	Glu
	→
	Stop
	1
	1
	1
	 	 	 
	 	185
	aGc
	→
	aTc
	 	Ser
	→
	Ile
	1
	 	 	 	 	1

	 	186
	agC
	→
	agA
	 	Ser
	→
	Arg
	1
	 	 	 	 	 
	 	189
	taC
	→
	taA
	CpG
	Tyr
	→
	Stop
	 	 	1
	3a
                            
	1
	 
	 	208
	Gag
	→
	Tag
	CpG
	Glu
	→
	Stop
	 	 	 	3
	1
	 
	 	244
	Gaa
	→
	Taa
	CpG
	Glu
	→
	Stop
	1
	2a
                            
	 	2
	1
	1

	 	262
	Gat
	→
	Tat
	 	Asp
	→
	Tyr
	 	 	1
	 	 	 
	 	281
	gGt
	→
	gTt
	 	Gly
	→
	Val
	 	 	 	 	1
	 
	 	304
	Gaa
	→
	Taa
	 	Glu
	→
	Stop
	1
	1
	1
	 	 	 
	 	320
	gCg
	→
	gAg
	CpG
	Ala
	→
	Glu
	1
	 	 	 	 	1

	 	401
	tGg
	→
	tTg
	 	Trp
	→
	Leu
	 	2a
                            
	 	 	 	 
	 	402
	tgG
	→
	tgT
	 	Trp
	→
	Cys
	 	1
	 	1
	4b
                            
	 
	 	406
	Gaa
	→
	Taa
	 	Glu
	→
	Stop
	 	2a
                            
	1
	 	3b
                            
	 
	 	409
	Cag
	→
	Aag
	 	Gln
	→
	Lys
	1
	 	 	 	 	 
	 	413
	cCg
	→
	cAg
	CpG
	Pro
	→
	Gln
	 	1
	 	1
	 	 
	G:C → C:G
	6
	agC
	→
	agG
	CpG
	Ser
	→
	Arg
	 	1
	 	 	 	 
	 	50
	cGt
	→
	cCt
	CpG
	Arg
	→
	Pro
	 	 	 	1
	 	 
	 	110
	cGt
	→
	cCt
	CpG
	Arg
	→
	Pro
	 	 	 	 	1
	 
	 	112
	Ggc
	→
	Cgc
	 	Gly
	→
	Arg
	1
	 	 	 	1
	 
	 	125
	cCg
	→
	cGg
	CpG
	Pro
	→
	Arg
	 	1
	 	2a
                            
	 	 
	 	127
	Ggt
	→
	Cgt
	 	Gly
	→
	Arg
	 	 	 	 	 	1

	 	130
	Gcg
	→
	Ccg
	 	Ala
	→
	Pro
	 	 	 	 	1
	1

	 	139
	Gcg
	→
	Ccg
	 	Ala
	→
	Pro
	 	 	 	 	1
	 
	 	186
	agC
	→
	agG
	 	Ser
	→
	Arg
	2
	1
	 	1
	 	 
	 	206
	cGc
	→
	cCc
	CpG
	Arg
	→
	Pro
	 	 	 	 	1
	 
	 	280
	Ggt
	→
	Cgt
	CpG
	Gly
	→
	Arg
	 	 	1
	1
	 	 
	 	289
	Gcg
	→
	Ccg
	 	Ala
	→
	Pro
	 	 	 	1
	 	 
	 	290
	gCg
	→
	gGg
	CpG
	Ala
	→
	Gly
	1
	 	 	 	 	 
	 	340
	Gca
	→
	Cca
	CpG
	Ala
	→
	Pro
	1
	1
	1
	1
	4b
                            
	1

	 	413
	cCg
	→
	cGg
	CpG
	Pro
	→
	Arg
	 	 	 	 	1
	 
	 	418
	Gat
	→
	Cat
	 	Asp
	→
	His
	 	 	 	 	1
	 
	 	442
	Cca
	→
	Gca
	 	Pro
	→
	Ala
	1
	 	 	 	1
	 
	A:T → T:A
	10
	Aaa
	→
	Taa
	 	Lys
	→
	Stop
	 	1
	 	 	 	 
	 	25
	Tgg
	→
	Agg
	 	Trp
	→
	Arg
	 	 	 	 	2a
                            
	1

	 	44
	caT
	→
	caA
	 	His
	→
	Gln
	 	 	 	 	1
	 
	 	88
	Aaa
	→
	Taa
	 	Lys
	→
	Stop
	 	 	 	 	 	2

	 	146
	gAa
	→
	gTa
	 	Glu
	→
	Val
	 	3a
                            
	 	 	 	 
	 	164
	gTc
	→
	gAc
	 	Val
	→
	Asp
	 	 	2
	 	 	 
	 	187
	Tac
	→
	Aac
	 	Tyr
	→
	Asn
	1
	 	 	 	 	 
	 	365
	gTt
	→
	gAt
	 	Val
	→
	Asp
	 	 	 	 	1
	 
	 	375
	taT
	→
	taA
	 	Tyr
	→
	Stop
	 	1
	 	 	 	 
	 	419
	gAt
	→
	gTt
	 	Asp
	→
	Val
	 	 	2a
                            
	 	 	 
	 	458
	tAa
	→
	tTa
	 	Stop
	→
	Leu
	 	1
	 	 	 	 
	 	459
	taA
	→
	taT
	 	Stop
	→
	Tyr
	 	 	1
	 	 	 
	A:T → C:G
	1
	Atg
	→
	Ctg
	 	Met
	→
	Leu
	 	 	1
	 	 	 
	 	56
	cTc
	→
	cGc
	 	Leu
	→
	Arg
	 	 	1
	 	 	1

	 	106
	Agc
	→
	Cgc
	 	Ser
	→
	Arg
	 	1
	1
	 	 	 
	 	134
	tTa
	→
	tGa
	 	Leu
	→
	Stop
	 	1
	 	 	 	 
	 	312
	taT
	→
	taG
	 	Tyr
	→
	Stop
	 	 	 	 	 	1

	 	419
	gAt
	→
	gCt
	 	Asp
	→
	Ala
	 	1
	 	 	 	1

	ᅟ

	Deletion
	8–12
	gAAAAAt
	→
	gAAAAt
	1
	1
	1
	 	 	 
	−1 base
	13
	aTa
	→
	aa
	 	1
	 	 	 	 
	 	26–28
	tGGGa
	→
	tGGa
	 	 	 	 	1
	1

	 	34–35
	gTTg
	→
	gTg
	1
	 	 	 	 	 
	 	67
	aCt
	→
	at
	 	 	 	 	1
	 
	 	86–87
	tGGa
	→
	tGa
	 	 	 	 	1
	 
	 	101–102
	gCCg
	→
	gCg
	 	 	 	 	1
	 
	 	114
	gCg
	→
	gg
	 	 	1
	 	 	 
	 	124–125
	aCCg
	→
	aCg
	 	 	 	 	 	1

	 	126–128
	cGGGt
	→
	cGGt
	 	1
	 	 	1
	 
	 	129
	gTg
	→
	gg
	 	1
	 	 	 	 
	 	170–171
	aCCg
	→
	aCg
	 	 	1
	 	2a
                            
	 
	 	176
	tGt
	→
	tt
	 	 	 	 	 	1

	 	198
	aCa
	→
	aa
	 	 	 	1
	 	 
	 	217
	aGt
	→
	at
	 	 	 	 	1
	 
	 	244
	cGa
	→
	ca
	 	 	 	1
	 	 
	 	247–248
	aGGc
	→
	aGc
	 	 	 	 	 	1

	 	249
	gCt
	→
	gt
	 	 	1
	 	 	 
	-
	266
	gAc
	→
	gc
	 	 	1
	 	 	 
	 	270–271
	tGGt
	→
	tGt
	 	2a
                            
	 	1
	 	 
	 	278–279
	aCCg
	→
	aCg
	 	 	 	 	1
	 
	 	285
	gTa
	→
	ga
	 	 	 	 	1
	 
	 	293–294
	gTTg
	→
	gTg
	 	 	 	 	1
	 
	 	315–318
	cAAAAg
	→
	cAAAg
	 	 	 	 	1
	 
	 	319
	aGc
	→
	ac
	 	1
	 	 	1
	 
	 	332–333
	aCCa
	→
	aCa
	 	1
	 	 	 	 
	 	401–402
	tGGa
	→
	tGa
	 	 	1
	 	 	 
	 	416–418
	tGGGa
	→
	tGGa
	1
	1
	 	 	1
	 
	 	442–443
	gCCa
	→
	gCa
	 	 	 	1
	 	 
	>2
	107–109
	aGCCg
	→
	ag
	 	 	 	 	2
	 
	 	114–120
	gCGGTCTGg
	→
	gg
	 	 	 	 	 	1

	 	129–139
	gTGCGTTACTGGc
	→
	gc
	 	 	2
	 	 	 
	 	140–152
	gCGCGTGAACTGGGt
	→
	gt
	 	1
	 	 	 	 
	 	161–442
	 	 	 	 	1
	 	 	 	 
	 	243–248
	gCGAAGGc
	→
	gc
	 	 	 	 	 	1

	 	300–306
	tTCGTGAAa
	→
	ta
	 	 	 	 	 	1

	 	375–380
	aTGTTGTt
	→
	at
	 	 	2
	 	 	 
	Insertion
	25
	cTg
	→
	cTTg
	 	 	 	 	1
	 
	 	75
	ct
	→
	cAt
	 	3a
                            
	 	 	 	 
	 	124
	ac
	→
	aTc
	 	 	 	 	2a
                            
	 
	 	136
	aCt
	→
	aCCt
	 	 	 	 	1
	 
	 	223–225
	gAAAc
	→
	gAAAAc
	 	1
	 	 	 	 
	 	229
	cGc
	→
	cGGc
	 	 	 	 	 	1

	 	286
	gt
	→
	gATACCGGTGGt
	 	1
	 	 	 	 
	 	335–337
	aTCTt
	→
	aTCTTCTt
	 	 	 	 	 	1

	 	362
	cTg
	→
	cTTg
	 	 	 	 	1
	 
	 	390
	cc
	→
	cTc
	 	 	 	 	1
	 
	 	392–393
	cAAg
	→
	cAAAg
	 	 	 	 	 	1

	 	401–402
	tGGa
	→
	tGGGa
	 	 	1
	2
	 	 
	Other
	26–27
	tGGg
	→
	tTg
	 	 	 	1
	 	 
	 	59–60
	gCAa
	→
	gGa
	 	 	 	 	1
	 
	 	100–102
	tGCCg
	→
	tTg
	 	 	 	 	1
	 
	 	140–141
	gCGc
	→
	gAAc
	 	 	 	1
	 	 
	 	304
	tGa
	→
	tAAa
	 	1
	 	 	 	 
	Total
	 	 	 	 	38
	92
	43
	42
	79
	49



                        a, b, and cMutations found in 2, 3, and 4 different mice, respectively

                        dCombined data of our previous studies [11, 17, 18]

                        eOur previous data [11]
CpG: mutation at CpG site



                
Our results showed that the predominant type of mutation in the lungs of the vehicle control gpt delta mice was G:C to A:T transitions in all age groups; these transitions have also been shown to be the predominant type of mutation in liver and other organs in both newborn and 23-month–old lacZ-transgenic mouse [19]. G:C to A:T transitions are recognized to be more frequently induced on CpG sites, in which cytosines tend to be methylated, by spontaneous deamination of methylated cytosines to form thymine residues, resulting in the formation of G:T mispairs [25]. Most cytosines in CpG sites in the liver of gpt gene integrated in the genomic DNA are highly methylated [26], and are therefore hotspots of spontaneous mutation in the control mice, such as G:C to A:T transitions at nucleotides 64, 110, and 115 are at CpG sites (Table 3). Methyl-CpG Domain Protein 4 (MBD4) and thymine-DNA glycosylase (TDG) [27] are mismatch repair enzymes that correct G:T mispairs by excising the mispaired thymine [28]. We consider that decrease in these DNA glycosylases and other mismatch repair enzymes possibly contribute to the observed increase in occurrence of G:C to A:T transitions in aged animals [19, 21, 29].
In B[a]P-instilled lung of gpt delta mice, G:C to A:T transitions were shown to increase in an age-dependent manner (Table 2); this type of mutation was most predominant in 24-month–old mice. In contrast, G:C to T:A transversions (a landmark mutation of B[a]P-DNA adduct formation possibly induced by translesional DNA synthesis [30]) were the major base substitution in B[a]P-instilled lungs of 3-month–old mice. As summarized in Table 4, estimation of specific mutant frequency ([Average mutant frequency in Table 1] × [% mutant of G:C to A:T transition or G:C to T:A transversion of corresponding group in Table 2]) showed that G:C to T:A transversion was markedly increased in B[a]P-instilled lung of 3-month–old mice (1.39 × 10−5) compared to the age-matched control (0.12 × 10−5) but the increase of G:C to A:T transition by B[a]P instillation was not observed in 3-month–old mice. On the other hand, in B[a]P-instilled lung of 24-month–old mice, specific mutant frequency of G:C to A:T transition (0.92 × 10−5) was elevated significantly (P < 0.01, Chi-square test) compared to the age-matched control (0.35 × 10−5), while G:C to T:A transversion was also elevated by B[a]P instillation. These observations suggest that G:C to T:A transversion was a predominant mutation for elevation of mutant frequency in B[a]P-instilled lung of 3-month–old mice, but in 24-month–old mice, induction of G:C to A:T transition as well as G:C to T:A transversion drove the elevation of mutant frequency by B[a]P instillation. Elevated levels of metabolic activation in young animals [22] might accelerate the induction of G:C to T:A transversions.Table 4Specific mutant frequency of G:C to A:T transition and G:C to T:A transversion on gpt gene from the lung of B[a]P-instilled and control mice


	Type of mutation in the gpt gene
	Control (months)
	B[a]P (months)

	 	3
	11
	24
	3
	11
	24

	 	Specific mutant frequency* (×10−5)
	 	 
	G:C → A:T
	0.27
	0.44
	0.35
	0.25
	0.42
	0.92**

	G:C → T:A
	0.12
	0.18
	0.14
	1.39
	0.40
	0.41


*Specific mutant frequency = [Average mutant frequency in Table 1] × [% mutant of G:C to A:T transition or G:C to T:A transversion of corresponding group in Table 2]
**P < 0.001 (Chi-square test) for comparison between B[a]P-instilled mice and age-matched control mice



                
Our mutation spectrum analysis of B[a]P-instilled lungs revealed that not only the overall percentage of G:C to A:T transitions but the percentage of G:C to A:T transitions at non-CpG sites increased with age (8 %, 12 %, and 25 % [‘the percentage of total G:C to A:T transitions’ minus ‘the percentage of total G:C to A:T transitions at CpG sites’] at 3 months, 11 months, and 24 months, respectively). A possible mechanism for the induction of G:C to A:T transitions in B[a]P-instilled old mice is that spontaneous deamination of cytosine at CpG sites was elevated in the lungs of these mice by instillation of B[a]P, resulting in an increase in the percentage of G:C to A:T transitions at CpG sites in 24-month–old mice (16 %). A decrease in mismatch repair [29] might also contribute to the increase in occurrence of G:C to A:T transitions in B[a]P-instilled aged animals. Another possibility is that DNA cytidine deaminase is activated in the lungs of aged mice by instillation of B[a]P. This enzyme catalyzes the conversion of cytosine to uracil at both CpG and non-CpG sites, which leads to G:U mispair formation and hence mutation of G:C to A:T. The hypermutation induced by DNA cytidine deaminase plays a role in creating antibody diversity in the variable regions [31], and expression of this enzyme causes genomic instability related to cancer and other diseases [32]. We speculate that B[a]P induces DNA cytidine deaminase in the lungs of aged animals resulting in the induction of G:C to A:T transversions at non-CpG sites.
The biological significance of the age-related increase in G:C to A:T transitions in both B[a]P-instilled and control mice remains unclear. G:C to A:T transitions are induced on codons 12 and 13 of the K-ras gene in lung tumors spontaneously induced in either p53-suppressed old mice or age-matched wild-type mice (13- to 24-month–old mice) [33]. Recently, G:C to A:T transitions were shown to occur frequently in six types of human tumors (lung adenocarcinoma, lung squamous cell carcinoma], bladder, cervix, head and neck), in which APOBEC3B, an isoform of DNA-cytidine deaminase, was upregulated [34], and lung adenocarcinoma developed in transgenic mice with constitutive expression of DNA-cytidine deaminase [35]. These observations suggest that an increase in G:C to A:T transitions may contribute to not only spontaneous but also B[a]P-induced tumorigenesis in the lungs of aged mice. However, further studies are required to reveal the mechanism that G:C to A:T transitions induced in the lung cause cancer and other diseases in the old age.


Conclusions
Our observations indicate that the order of the age groups in terms of highest to lowest fold of increase in mutant frequency in the lungs following instillation of B[a]P was 3-, 24-, and 11-month–old mice, suggesting that young mice are the age-group most susceptible to B[a]P. G:C to T:A transversion was shown to be a predominant mutation for elevation of mutant frequency in B[a]P-instilled lung of 3-month–old mice, but in 24-month–old mice, induction of G:C to A:T transition as well as G:C to T:A transversion drove the elevation of mutant frequency by B[a]P instillation. We speculate that B[a]P induces DNA cytidine deaminase in the lungs of aged animals resulting in the induction of G:C to A:T transversions at non-CpG sites.
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