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Abstract

Introduction: We present here a simple, phenotype-independent mutation assay using a PacBio RSII DNA
sequencer employing single-molecule real-time (SMRT) sequencing technology. Salmonella typhimurium YG7108
was treated with the alkylating agent N-ethyl-N-nitrosourea (ENU) and grown though several generations to fix the
induced mutations, the DNA was extracted and the mutations were analyzed by using the SMRT DNA sequencer.

Results: The ENU-induced base-substitution frequency was 15.4 per Megabase pair, which is highly consistent with
our previous results based on colony isolation and next-generation sequencing. The induced mutation spectrum
(95% G:C→ A:T, 5% A:T→ G:C) is also consistent with the known ENU signature. The base-substitution frequency of
the control was calculated to be less than 0.12 per Megabase pair. A current limitation of the approach is the high
frequency of artifactual insertion and deletion mutations it detects.

Conclusions: Ultra-low frequency base-substitution mutations can be detected directly by using the SMRT DNA
sequencer, and this technology provides a phenotype-independent mutation assay.
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Introduction
Mutation assays capable of detecting somatic mutations at
very low frequencies are important in the areas of environ-
mental mutagenesis, carcinogenesis, epidemiology, and
regulatory science. They are especially important in the
context of safety evaluation of newly developed drugs or
industrial chemicals. Although many mutation assays have
been developed, most rely on some kind of phenotypic se-
lection, which involves time-consuming procedures and is
potentially biased. We previously reported a phenotype-
free mutation assay using next-generation DNA sequen-
cing [1]. In that study, we treated a Salmonella typhimur-
ium strain with a mutagen to induced and fix mutations,
followed by colony isolation and whole-genome sequen-
cing of the colonies. The induced mutations were success-
fully detected in silico using bioinformatics software. That
strategy is summarized in Fig. 1 and named the ‘Colony-
NGS method’. Although the approach is simple and

reliable, difficulties still remain when it is applied to mam-
malian cells. This is because: 1) the colony-isolation step is
much more technically challenging in the case of mamma-
lian cells compared to bacterial cells, and 2) the mamma-
lian genome is diploid and hundreds of times larger than
the bacterial genome, which limits deep coverage in se-
quencing. Furthermore, the Colony-NGS method is not
applicable to bio-monitoring of somatic mutations in tis-
sues of experimental animals or clinical specimens from
patients because it is impossible to do the colony isolation
from those sources.
Recently, ‘Duplex Sequencing’ methodologies, which

enable detecting a single mutation among >1 × 107 nu-
cleotides by using a general next-generation DNA se-
quencing (NGS) technology, have been developed [2,3].
This is a very promising strategy for application to bio-
monitoring of somatic mutations. However, here in this
paper we demonstrate an alternative approach by using
single-molecule real-time sequencing.
The PacBio RS II DNA sequencer (Pacific Biosciences,

Inc.) is a recent innovation [4] based on a single-
molecule real-time (SMRT) technology. Since it is able
to read the sequence of a single DNA molecule, it can in
principle detect the mutations present in the molecule
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just by sequencing it accurately, as summarized in Fig. 1
(named the ‘SMRT method’) [5]. A significant advantage
of this strategy is that the colony isolation step is un-
necessary, so that the approach should be applicable to
any cell line and specimen from experimental animals,
patients and environmental animals.
However, a drawback of this technology is the accuracy

of the sequencing data it generates. At present, the error
rate in raw reads of the PacBio sequencer is exceedingly
high (~15%). To help overcome this problem, the
‘SMRTbellTM template’, in which single-stranded DNA
loops are ligated to both ends of a double-stranded DNA,
is used to direct sequencing of the same DNA molecule
repeatedly [6]. The greater the number of repeat reads so
as to generate a consensus read of multiple sub-reads
from the same single circular DNA template – i.e., a cir-
cular consensus sequence (CCS) read – the more accur-
ate the sequencing result [7]. In this study, we validated
that we can detect ultra-low frequency mutations by
using the SMRT method with the CCS strategy.

Materials and methods
Materials
ENU (CAS No. 759-73-9) and dimethyl sulfoxide
(DMSO; CAS NO. 67-68-5) were purchased from Wako

(Osaka, Japan). The test strain Salmonella typhimurium
YG7108, hisG46 rfa ΔuvrB bio adaST::kan

r ogtST::cat
r,

which is highly sensitive to alkylating agents, was used
in this study [8].

Mutagen exposure and mutation fixation
The exposure method followed the Ames test 20-min
pre-incubation procedure [9]. The YG7108 strain was
cultured overnight at 37 °C in nutrient broth (No.2,
OXOID) containing 25 μg/mL kanamycin and 10 μg/mL
chloramphenicol. Phosphate buffer (0.5 mL), DMSO or
2.5 mg/mL ENU (0.1 mL) and the overnight culture (0.1
mL) were mixed in a tube in that order and incubated
for 20 min at 37 °C with gentle shaking at 100 rpm. A 1-
μL portion was added into 10 mL of LB medium and
cultured at 37 °C for 13 h to fix mutations, after which
DNA was extracted. The rest of the mixture was poured
onto a minimum agar plate in 2 mL of 0.6 % soft agar
and incubated for two days at 37 °C, following which the
revertant colonies were counted.

Preparation of SMRTbellTM templates and sequencing
The genomic DNA samples (5 μg each) were sheared to
50-1000 bp (average 280 bp) fragments by using a Cov-
aris Shearing Device, and used to construct a PacBio
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Fig. 1 Two distinct strategies to detect low-frequency mutations using high-throughput DNA sequencers
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DNA library using a SMRTbell Template Prep Kit 1.0 fol-
lowing the manufacturer’s guidelines (http://www.pacb.
com/samplenet/PC_250bp_Amplicon_Library_Preparation_
and_Sequencing.pdf). Each sample was sequenced on the
PacBio RS platform on a single SMRT Cell with C2-P4
chemistry. The base calling and CCS read generation
was carried out using PacBio’s instrument control and
SMRT Analysis software.

In silico mutation detection
Mutation detection was carried out by using CLC Genom-
ics Workbench software (ver 7). The fastq files of raw data
and CCS were imported into the software. The CCS fastq
files were mapped to reference Salmonella genome se-
quences: NC_003197 (S. typhimurium str. LT2 chromo-
some, complete genome, 4,857,432 bp), and CP003387 (S.
typhimurium str. 798 plasmid p798_93, complete se-
quence, 93,877 bp). The point mutations were detected
using the Basic Variant Detection command (first screen-
ing). The essential parameters of the Basic Variant Detec-
tion were: ploidy = 1, minimum coverage = 1, minimum
count = 1, minimum frequency (%) = 0.1, neighborhood

radius = 5, minimum central quality = 40, minimum neigh-
borhood quality = 40. The mutated reads were searched in
the CCS fastq files and their corresponding raw reads were
extracted from the raw-fastq files. The extracted raw reads
were combined in a new fastq file and mapped to the
Salmonella reference sequence again. The raw reads were
manually checked and mutation calls were counted with
the help of the viewer function of the CLC Genomics
Workbench software.

Results
The test strain Salmonella typhimurium YG7108, which
is highly sensitive to alkylating agents, was treated with
ENU (Fig. 2a) or its solvent DMSO, followed by dilution
and growth overnight in LB medium to fix mutations.
Genomic DNA was extracted from the overnight cul-
ture. SMRTbell templates were prepared from the DNA
samples, with an average insertion size of 280 bp. Note
that no PCR amplification step was carried out during
preparation of the SMRTbell templates, which is essen-
tial to minimize the occurrence of artifactual mutations.
The templates were subjected to the sequencing reaction

(A)

(B)

Fig. 2 Detection of mutations, DNA damage and mismatches by mapping of raw reads of the SMRT sequencer. a Example of ENU induction of
an alkylated base (O6-ethyl-guanine) in genomic DNA, which will induce a G to A mutation after the 2nd round of replication. b Examples of
mapped reads. In cases of a real mutation, the same base is clearly called in both the forward and reverse reads. In cases of DNA damage, one
strand is mapped clearly but the other strand is not. In cases of mismatch, both the forward and reverse reads are mapped clearly but different
bases are called between the forward and reverse reads
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in the PacBio RS II platform, and fastq files were gener-
ated from the raw data (contains all the sequence infor-
mation of multiple sub-reads) and CCS data (contains
only the consensus sequence). The threshold of the CCS
was a pass time (the number of times the same molecule
was repeatedly read) of 10 and 99% accuracy.
The CCS-fastq files were imported to CLC Genomics

Workbench software (ver.7). In total, 8.09 and 8.56 Mbp
of the sequence data were obtained from the control and
ENU-treated samples, respectively. The CCS reads were
mapped to the reference sequence of Salmonella typhi-
murium and the point mutations were detected in silico.
Improbably large numbers of insertions and deletions
were called in both the control (405 insertions and 424
deletions) and ENU-treated (367 insertions and 1276 de-
letions) samples, respectively (Table 1). We had previ-
ously analyzed mutations induced in the same bacterial
strain with the same exposure protocol by isolating

colonies and carrying out whole-genome sequencing. In
that previous study, we analyzed the entire genome of
each of 4 clones (4.8 Mbp of Salmonella genome × 4
clones = 19.6 Mbp search region), but did not detect any
insertions and deletions in either the control or ENU-
treated samples (unpublished observations). Thus we
concluded that the insertions and deletions called in this
present study are not reliable and most probably arti-
facts. In the case of base substitutions, however, 19 and
160 mutations were called in the control and ENU-
treated samples, respectively (Table 1). While these fre-
quencies are consistent with the results of our previous
study, they are still higher than the estimated values.
Thus we decided to proceed with a confirmation step re-
garding the base substitutions.
Next, we obtained sequence IDs of the CCS reads in

which the base substitutions were called at the first
screening. Then we searched the sequence IDs in the
raw fastq files and extracted the corresponding informa-
tion of the sequence IDs, and made new fastq files which
contained the raw repeated sequence data of the mole-
cules in which the base substitution was possibly
present. The newly edited fastq files were mapped to the
same Salmonella reference sequence. Typical examples
of mapped raw reads are shown in Fig. 2b. In the se-
quencing reaction using the SMRTbell template, the plus

Table 1 Number of mutation-calls at the first screening

Sample No. of bases
analyzed (Mb)

No. of mutations called

Insertions Deletions Base substitutions

Control 8.09 405 424 19

ENU 8.56 376 1276 160

Table 2 Details of the 19 base substitutions called at the first screening in the control sample

Reference
position

Reference Forward read Reverse read Comment Judgement p-
value**Most dominant

allele
Coverage Read

count
p-value* Most dominant

allele
Coverage Read

count
p-value*

999271 C C 33 23 3.9E-20 T 36 30 5.5E-31 Mismatch 0

4778252 T T 17 16 9.1E-19 A 19 19 4.4E-23 Mismatch 0

3355477 0047 C 13 12 4.4E-14 G 11 10 1.0E-11 Mismatch 1.0E-11

536849 C C 9 9 2.5E-11 T 9 9 2.5E-11 Mismatch 5.0E-11

1051080 G A 10 9 1.6E-10 G 10 9 1.6E-10 Mismatch 3.1E-10

3287776 A T 11 8 8.2E-08 A 12 11 6.7E-13 Mismatch 8.2E-08

3823422 C C 7 4 5.7E-03 G 11 10 1.0E-11 Mismatch 5.7E-03

316363 G edge of map No

694963 C edge of map No

918766 G edge of map No

1922859 C edge of map No

4423790 C edge of map No

4144134 C No mutation No

4515279 C No mutation No

290717 C original allele No

1760048 A original allele No

1760052 A original allele No

3741045 T original allele No

4099877 G original allele No
*Probability that the real allele is not the most dominant allele
**Probability that the Judgement is not correct
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Table 3 Details of the 160 base substitutions called at the first screening in the ENU-treated sample

Reference
position

Reference
position

Forward read Reverse read Comment Judgement p-
value**Most dominant

allele
Coverage Read

count
p-value* Most dominant

allele
Coverage Read

count
p-value*

146824 G A 22 19 1.2E-20 A 22 18 9.9E-19 Mutation 0

994061 G A 20 19 2.9E-22 A 20 17 2.4E-18 Mutation 0

2007634 G A 33 24 5.9E-22 A 31 25 2.9E-25 Mutation 0

2044677 C T 24 19 3.9E-19 T 21 18 1.7E-19 Mutation 0

2724713 C T 32 21 3.4E-17 T 33 22 2.5E-18 Mutation 0

2747120 G A 34 24 2.9E-21 A 37 31 4.0E-32 Mutation 0

2871399 G A 32 26 2.1E-26 A 34 28 1.1E-28 Mutation 0

2930794 G A 26 23 2.8E-25 A 24 18 3.0E-17 Mutation 0

3007696 A G 45 33 4.8E-30 G 47 36 4.0E-34 Mutation 0

3322100 C T 21 18 1.7E-19 T 22 19 1.2E-20 Mutation 0

3666060 G A 29 23 5.7E-23 A 30 22 2.2E-20 Mutation 0

3695370 G A 20 17 2.4E-18 A 21 18 1.7E-19 Mutation 0

3708252 A G 29 26 9.5E-29 G 31 25 2.9E-25 Mutation 0

3863986 G A 18 16 5.8E-18 A 19 16 3.5E-17 Mutation 0

3961843 G A 25 20 2.8E-20 A 25 23 4.3E-26 Mutation 0

4320817 C T 21 18 1.7E-19 T 21 18 1.7E-19 Mutation 0

2171812 G A 16 15 1.3E-17 A 17 15 8.4E-17 Mutation 1.1E-16

327560 C T 23 17 4.3E-16 T 24 20 4.9E-21 Mutation 4.4E-16

2209612 A G 16 14 1.2E-15 G 15 14 2.0E-16 Mutation 1.4E-15

2705366 G A 24 17 2.2E-15 A 24 22 6.3E-25 Mutation 2.2E-15

2215678 C T 30 19 6.1E-15 T 30 26 6.0E-28 Mutation 6.1E-15

3881583 C T 15 13 1.8E-14 T 14 14 3.1E-17 Mutation 1.8E-14

1368298 G A 16 13 1.1E-13 A 17 17 9.5E-21 Mutation 1.1E-13

4840145 G A 16 13 1.1E-13 A 18 14 4.2E-14 Mutation 1.5E-13

390064 C T 17 13 6.1E-13 T 19 16 3.5E-17 Mutation 6.1E-13

733247 C T 17 13 6.1E-13 T 18 16 5.8E-18 Mutation 6.1E-13

3257503 G A 17 13 6.1E-13 A 17 16 9.1E-19 Mutation 6.1E-13

935658 G A 18 15 5.0E-16 A 17 13 6.1E-13 Mutation 6.1E-13

2316694 C T 17 14 7.4E-15 T 17 13 6.1E-13 Mutation 6.2E-13

414142 G A 12 11 6.7E-13 A 12 12 6.9E-15 Mutation 6.7E-13

556175 G A 13 12 4.4E-14 A 12 11 6.7E-13 Mutation 7.1E-13

355651 C T 38 30 1.8E-29 T 36 20 7.3E-13 Mutation 7.3E-13

748721 C T 14 12 2.7E-13 T 12 11 6.7E-13 Mutation 9.4E-13

2715604 C T 20 14 1.2E-12 T 24 20 4.9E-21 Mutation 1.2E-12

2504585 C T 10 10 1.6E-12 T 10 10 1.6E-12 Mutation 3.2E-12

688445 G A 12 11 6.7E-13 A 11 10 1.0E-11 Mutation 1.1E-11

222807 C T 18 16 5.8E-18 T 19 13 1.7E-11 Mutation 1.7E-11

4652102 G A 19 13 1.7E-11 A 22 20 1.3E-22 Mutation 1.7E-11

3117258 G A 25 19 2.2E-18 A 22 14 3.0E-11 Mutation 3.0E-11

1005055 C T 16 12 8.9E-12 T 14 11 2.4E-11 Mutation 3.2E-11

2264426 G A 11 10 1.0E-11 A 9 9 2.5E-11 Mutation 3.5E-11

992465 C T 14 11 2.4E-11 T 14 11 2.4E-11 Mutation 4.7E-11

1076365 G T 12 10 6.1E-11 T 12 11 6.7E-13 Mutation 6.2E-11
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Table 3 Details of the 160 base substitutions called at the first screening in the ENU-treated sample (Continued)

458994 C A 29 26 9.5E-29 A 23 14 1.4E-10 Mutation 1.4E-10

3062433 C T 18 14 4.2E-14 T 13 10 3.5E-10 Mutation 3.5E-10

421079 G T 8 8 4.0E-10 T 9 9 2.5E-11 Mutation 4.2E-10

4736812 C A 24 14 6.4E-10 A 18 16 5.8E-18 Mutation 6.4E-10

2957288 C T 12 12 6.9E-15 T 11 9 9.4E-10 Mutation 9.4E-10

3872165 C T 11 9 9.4E-10 T 10 10 1.6E-12 Mutation 9.4E-10

278409 G T 19 12 1.2E-09 T 23 14 1.4E-10 Mutation 1.4E-09

2861538 G A 15 13 1.8E-14 A 14 10 1.9E-09 Mutation 1.9E-09

1408682 G A 9 8 2.4E-09 A 9 9 2.5E-11 Mutation 2.5E-09l

272653 C A 10 9 1.6E-10 A 9 8 2.4E-09 Mutation 2.6E-09

2757635 G T 9 8 2.4E-09 T 8 8 4.0E-10 Mutation 2.8E-09

4148066 C A 9 8 2.4E-09 A 8 8 4.0E-10 Mutation 2.8E-09

206275 T 17 11 3.6E-09 T 14 11 2.4E-11 Mutation 3.6E-09

250264 C T 9 8 2.4E-09 T 9 8 2.4E-09 Mutation 4.9E-09

2425294 C T 9 8 2.4E-09 T 9 8 2.4E-09 Mutation 4.9E-09

4431921 G A 12 9 5.4E-09 A 12 10 6.1E-11 Mutation 5.4E-09

909863 C T 31 16 5.5E-09 T 31 17 9.6E-11 Mutation 5.6E-09

1085221 G A 12 9 5.4E-09 A 12 9 5.4E-09 Mutation 1.1E-08

2250730 G A 10 10 1.6E-12 A 10 8 1.5E-08 Mutation 1.5E-08

662822 G A 21 12 2.8E-08 A 19 18 4.3E-21 Mutation 2.8E-08

731542 C T 13 9 2.9E-08 T 13 11 4.1E-12 Mutation 2.9E-08

412934 G A 8 7 3.9E-08 A 10 8 1.5E-08 Mutation 5.3E-08

2104411 C T 11 8 8.2E-08 T 12 10 6.1E-11 Mutation 8.2E-08

4189314 G A 15 13 1.8E-14 A 14 9 1.5E-07 Mutation 1.5E-07

3364045 C T 14 9 1.5E-07 T 15 12 1.6E-12 Mutation 1.5E-07

2795479 C T 6 6 1.0E-07 T 6 6 1.0E-07 Mutation 2.1E-07

555449 G A 9 7 2.3E-07 A 9 9 2.5E-11 Mutation 2.3E-07

1306236 G A 12 8 4.5E-07 A 12 10 6.1E-11 Mutation 4.5E-07

4173104 G A 9 7 2.3E-07 A 9 7 2.3E-07 Mutation 4.6E-07

2260312 C T 8 7 3.9E-08 T 7 6 6.3E-07 Mutation 6.7E-07

2873628 G A 6 6 1.0E-07 A 7 6 6.3E-07 Mutation 7.4E-07

1219556 C T 9 7 2.3E-07 T 7 6 6.3E-07 Mutation 8.6E-07

3929806 C T 17 13 6.1E-13 T 18 10 1.2E-06 Mutation 1.2E-06

719703 G A 10 7 1.3E-06 A 9 8 2.4E-09 Mutation 1.3E-06

767167 C T 10 7 1.3E-06 T 11 8 8.2E-08 Mutation 1.4E-06

4671425 C T 5 5 1.7E-06 T 7 7 6.3E-09 Mutation 1.7E-06

74626 G A 5 5 1.7E-06 A 6 6 1.0E-07 Mutation 1.8E-06

1556611 G A 5 5 1.7E-06 A 6 6 1.0E-07 Mutation 1.8E-06

3771665 G A 13 8 2.3E-06 A 13 10 3.5E-10 Mutation 2.3E-06

1277370 C T 10 7 1.3E-06 T 10 7 1.3E-06 Mutation 2.6E-06

2831234 G A 8 6 3.7E-06 A 8 8 4.0E-10 Mutation 3.7E-06

4834248 G A 16 9 3.8E-06 A 17 15 8.4E-17 Mutation 3.8E-06

4640576 G A 12 10 6.1E-11 A 11 7 6.9E-06 Mutation 6.9E-06

314407 C T 11 7 6.9E-06 T 10 9 1.6E-10 Mutation 6.9E-06

1799318 G A 9 8 2.4E-09 A 6 5 1.1E-05 Mutation 1.1E-05
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Table 3 Details of the 160 base substitutions called at the first screening in the ENU-treated sample (Continued)

2647267 T C 6 5 1.1E-05 C 7 7 6.3E-09 Mutation 1.1E-05

1579929 G A 6 6 1.0E-07 A 6 5 1.1E-05 Mutation 1.1E-05

2458998 C T 6 6 1.0E-07 T 6 5 1.1E-05 Mutation 1.1E-05

3936247 C T 14 13 3.0E-15 T 14 8 1.2E-05 Mutation 1.2E-05

4121383 G A 14 8 1.2E-05 A 14 9 1.5E-07 Mutation 1.2E-05

1511517 G A 5 5 1.7E-06 A 6 5 1.1E-05 Mutation 1.2E-05

2963125 G A 5 5 1.7E-06 A 6 5 1.1E-05 Mutation 1.2E-05

2953567 G A 9 8 2.4E-09 A 9 6 2.1E-05 Mutation 2.1E-05

4521210 G A 9 6 2.1E-05 A 10 7 1.3E-06 Mutation 2.2E-05

1066165 C T 4 4 3.0E-05 T 5 5 1.7E-06 Mutation 3.2E-05

4377924 G A 5 5 1.7E-06 A 4 4 3.0E-05 Mutation 3.2E-05

655040 C T 12 7 3.6E-05 T 12 11 6.7E-13 Mutation 3.6E-05

3801057 G A 12 7 3.6E-05 A 12 8 4.5E-07 Mutation 3.6E-05

1064555 G A 4 4 3.0E-05 A 6 5 1.1E-05 Mutation 4.1E-05

3156134 C T 15 8 5.6E-05 T 12 8 4.5E-07 Mutation 5.7E-05

1090650 C T 7 5 6.1E-05 T 8 8 4.0E-10 Mutation 6.1E-05

4836541 T C 7 5 6.1E-05 C 8 8 4.0E-10 Mutation 6.1E-05

3417592 G A 7 5 6.1E-05 A 8 7 3.9E-08 Mutation 6.1E-05

3188210 G A 6 6 1.0E-07 A 7 5 6.1E-05 Mutation 6.1E-05

700494 C T 7 5 6.1E-05 T 7 6 6.3E-07 Mutation 6.2E-05

3298937 C T 7 6 6.3E-07 T 7 5 6.1E-05 Mutation 6.2E-05

496768 A G 7 5 6.1E-05 G 5 5 1.7E-06 Mutation 6.3E-05

630974 G A 7 5 6.1E-05 A 7 5 6.1E-05 Mutation 1.2E-04

4169252 G A 5 4 1.8E-04 A 6 6 1.0E-07 Mutation 1.8E-04

2123568 G A 5 4 1.8E-04 A 6 5 1.1E-05 Mutation 1.9E-04

3795698 G A 6 5 1.1E-05 A 5 4 1.8E-04 Mutation 1.9E-04

1779923 G A 7 5 6.1E-05 A 5 4 1.8E-04 Mutation 2.4E-04

3668382 G A 19 9 3.1E-04 A 20 16 2.0E-16 Mutation 3.1E-04

2989782 G A 8 5 3.4E-04 A 8 8 4.0E-10 Mutation 3.4E-04

1297655 C T 8 5 3.4E-04 T 8 7 3.9E-08 Mutation 3.4E-04

3625847 A G 8 5 3.4E-04 G 10 7 1.3E-06 Mutation 3.4E-04

4660505 G A 17 8 9.7E-04 A 20 13 8.6E-11 Mutation 9.7E-04

4586383 C T 6 4 1.0E-03 T 6 6 1.0E-07 Mutation 1.0E-03

2325510 C T 5 4 1.8E-04 T 4 3 3.2E-03 Mutation 3.4E-03

4111137 G A 5 4 1.8E-04 A 4 3 3.2E-03 Mutation 3.4E-03

2901163 C T 8 5 3.4E-04 T 7 4 5.7E-03 Mutation 6.0E-03

3551802 G A 7 4 5.7E-03 A 8 5 3.4E-04 Mutation 6.0E-03

4469079 C T 10 8 1.5E-08 T 10 5 9.1E-03 Mutation 9.1E-03

4539546 G A 5 3 0.02 A 6 4 1.0E-03 Mutation 0.02

4539738 G A 5 5 1.7E-06 A 3 2 0.06 Mutation 0.06

2955452 G A 6 3 0.10 A 7 7 6.3E-09 Mutation 0.10

4153066 G A 8 6 3.7E-06 A 6 3 0.10 Mutation 0.10

4767697 C T 6 5 1.1E-05 T 6 3 0.10 Mutation 0.10

4128014 C T 6 3 0.10 T 6 4 1.0E-03 Mutation 0.10

2410269 G A 7 3 0.23 A 8 5 3.4E-04 Mutation 0.23
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and minus strands of a double-stranded DNA molecule
are read alternately, thus almost equivalent numbers of
forward and reverse reads were obtained. In cases of real
mutations, the same base substitutions will be called in
both the forward and reverse reads. In cases where dif-
ferent base substitutions were called between the for-
ward and reverse reads, these must be templates bearing
a mismatch. In cases where a specific base was clearly
called for on one strand but a variety of bases was called
for the opposite strand, this may indicate the existence
of persistent DNA damage.
After carefully checking the raw data, the base substi-

tution mutations called in Table 1 were counted again
and shown in Tables 2, 3 and 4. After recalculation, the
numbers of ‘real’ base substitution mutations were 0
and 132 in the control and ENU-treated samples, re-
spectively (Table 4). The rest were likely due to mis-
matches, DNA damage, SNPs that the strain originally
possessed, calls at the edges of the mapped read which
did not have sufficient coverage, and so on.

We compared the mutation data by this method
(SMRT method) with our previous result from colony
isolation and whole-genome sequencing (Colony-NGS
method). In the ENU-treated samples, the mutation fre-
quencies estimated by the SMRT method (15.4/Mbp)
and the Colony-NGS method (12.7/Mbp) were very
similar and not significantly different by the binomial
test (Fig. 3a). The mutation spectrum obtained by the
SMRT method showed that 95% were G:C→A:T transi-
tions and 5% were A:T→G:C transitions (Table 3 and

Table 3 Details of the 160 base substitutions called at the first screening in the ENU-treated sample (Continued)

3010834 C C 18 16 5.8E-18 T 15 15 2.1E-18 Mismatch 0

3615885 C C 21 21 2.1E-25 T 21 17 1.4E-17 Mismatch 0

4623405 A T 71 63 3.4E-67 A 71 66 3.6E-73 Mismatch 0

2499952 G A 15 14 2.0E-16 G 15 15 2.1E-18 Mismatch 2.2E-16

4452587 G A 10 10 1.6E-12 G 10 9 1.6E-10 Mismatch 1.6E-10

3911612 C C 21 13 4.2E-10 T 20 15 1.6E-14 Mismatch 4.2E-10

2608981 C C 7 6 6.3E-07 T 8 8 4.0E-10 Mismatch 6.3E-07

128045 G C 14 12 2.7E-13 G 12 7 3.6E-05 Mismatch 3.6E-05

3890711 G A 7 4 5.7E-03 G 7 4 5.7E-03 Mismatch 0.01

2691271 C T 7 7 6.3E-09 C or - 8 2 Damage

2750772 G - 4 3 3.2E-03 A 5 5 1.7E-06 Damage

3648312 A A or - 6 2 G 5 4 1.8E-04 Damage

4329658 C T 5 4 1.8E-04 T,G,C,- 4 1 Damage

1412330 G original allele No

2298627 A original allele No

2846790 G original allele No

3386508 G original allele No

3386511 T original allele No

171648 C No mutation No

357352 A No mutation No

992221 G No mutation No

4831490 C No mutation No

1291152 G edge of map No

3591684 C edge of map No

4010951 G edge of map No

4065759 G edge of map No

4314300 G edge of map No
*Probability that the real allele is not the most dominant allele
**Probability that the Judgement is not correct

Table 4 No. of base substitutions after checking original fastq
files

Control ENU

Real mutation 0 132

Mismatch 7 9

Possibly DNA damage 0 4

No mutation 12 15

Total 19 160
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Fig. 3c). This mutation spectrum is well consistent with
the ENU signature shown in a previous report [10] and
our previous data obtained by the Colony-NGS method
(unpublished observations). As for the control (DMSO
treated) samples, no mutation was observed in both the
SMRT and Colony-NGS methods, thus the mutation fre-
quency was calculated as less than 0.12 per Mbp (1 mu-
tation/8.09 Mbp) and less than 0.05 per Mbp (1
mutation/19.6 Mbp), respectively (Fig. 3a).

Discussions
In this paper, we successfully detected ultra-low fre-
quency base substitution mutations by using a single-
molecule real-time sequencer with the SMRTbell strat-
egy. In principle, this strategy is applicable to any DNA
samples such as from bacteria, cell lines, tissues of ex-
perimental animals, specimens from patients, and en-
ables us to quantify the mutation frequency and the
mutation signature of such DNA samples.
The significant merit for using SMRTbell strategy is

that we can sequence each plus and minus strand of a
double stranded DNA, thus we are able to distinguish
‘real mutations’ from ‘mismatches’ or ‘DNA damages’.
Intriguingly, we could detect not only fixed mutations
but also mismatches in the Salmonella DNA. In this
current procedure, a half of the total mismatches are ex-
pected to be detected. From our data, the occurrence of
the mismatches in the Salmonella genome was roughly
estimated as 8 - 10. However, to quantify mismatches
absolutely, a new bioinformatics tool should be devel-
oped. We also detected 4 possible ‘DNA damages’ only in
the ENU-treated sample (Table 4). In Table 3, the raw read

judged as ‘Damage’ seems to have lower coverage number
than ‘mutation’ or ‘mismatch’. This would reflect the pres-
ence of the DNA damages in the SMRTbell templates.
Note that, the current procedure is not designed for detec-
tion of the DNA damages, thus the detected number
would be far less than that of real DNA damages.
The background mutation frequency of the SMRT

method in this study was less than 0.12 per Mbp which
was comparable to the background level of ‘Duplex Se-
quencing’ methodologies [2,3]. The background level
would depend on the threshold of pass time and accur-
acy of the CCS. The threshold values used in this study
were the most strict values in the current version of Pac-
Bio’s instrument control and SMRT Analysis software.
The real mutation frequency of the control sample was
estimated by combining the Colony-NGS and Ames
assay results. In the Ames assay using the same exposure
procedure, the mutation frequency of the control sample
was 1/685 of that of the ENU-treated sample (Fig. 3b),
thus the mutation frequency of the control sample was
estimated as 12.7/685 = 0.02 per Mbp. Therefore, more
sequencing data (at least 50 Mbp) are required to detect
mutations in the control sample.
As for insertion and deletion type mutations, this

strategy cannot be used at present because of the very
high background level of indels. The reason why more
deletions were observed in the ENU-treated sample may
be because remaining DNA damages influenced the se-
quence reaction. Ongoing improvements to the hard-
ware and software of the SMRT sequencer and to the
bioinformatics of mutation detection will likely over-
come this problem in the near future.
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Fig. 3 The SMRT method successfully detects ENU-induced base substitution mutations, with a very low background level. a Frequency of base
substitutions estimated by the SMRT method and the Colony-NGS method. b Results of the Ames assay. c Mutation spectrum of ENU-induced
base substitutions estimated by the SMRT method
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Conclusion
Ultra-low frequency base-substitution mutations can be
detected directly by using the SMRT DNA sequencer, and
this technology provides a useful phenotype-independent
mutation assay.
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