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Abstract

Background: The endocrine disruptor Bisphenol-A (BPA), has been involved in dysregulating adipose tissue
development and increasing the risk of obesity. The objective of this experiment was to investigate whether
treatment of human mesenchymal stem cells with BPA could modulate adipogenesis and adipocyte differentiation.

Methods: In this experimental study, the human adipose-derived mesenchymal stem cells (hASCs) were cultured
for 2 weeks with continuous exposure to 10− 10 M or 10− 8 M concentrations of BPA. The extent of triglyceride
accumulation was visualized by Oil Red O staining. To evaluate BPA effect on the expression levels of key
adipogenic trascripotion factors and proteins, we used Quantitative reverse transcriptase-polymerase chain reaction
(qRT-PCR) and ELISA.

Results: The results presented a dose-dependent triglyceride accumulation in treated cells with BPA. Additionally,
we observed that BPA induced transcription of the Peroxisome proliferator-activated receptor-gamma (PPARγ),
CCAAT-enhancer-binding protein-alpha (C/EBPα), CCAAT-enhancer-binding protein-beta (C/EBPβ), sterol regulatory
element-binding protein-1c (SREBP1c), Fatty acid synthase (FASN), and lipoprotein lipase (LPL); BPA suppressed the
expression of Fatty acid binding protein-4 (FABP4) and Estrogen receptor-beta (ERβ).
Conclusions: Our findings supported the hypothesis that BPA enhances adipogenic differentiation thereby may
play a role in development of obesity and dysregulation of metabolic homoeostasis.
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Introduction
In recent years, the prevalence of obesity has risen sig-
nificantly to become one of the epidemic health prob-
lems and fostering growing comorbidities including
insulin resistance, cardiovascular diseases, carcinogen-
esis, and infertility [1, 2].
While diet and a sedentary life style have obviously

contributed to the increasing rate of obesity, there is
mounting literature to propose that exposure to environ-
mental chemicals, known as obesogens, may be cooper-
ating to dramatic increase in prevalence of obesity [3–5].

Endocrine disruptors possibly act as obesogens, by
stimulating adipogenesis via promoting fat accumulation
or developing a positive energy balance [6, 7]. Endocrine
disrupters can interfere with the endocrine system by
mimicking or modifying the synthesis, transportation,
metabolism, excretion or action of endogenous hor-
mones [8, 9].
Bisphenol A (BPA) is a well-known estrogen-like activ-

ity chemical that everyone may expose to because it is
used in manufacturing of a wide range of products such
as food packaging, feeding bottles, the epoxy based lin-
ing of canned foods, and more [10–12]. BPA can be re-
leased from these materials into food and water and
then into human body [13, 14]. Nanomolar levels of
BPA can be detected in human serum, amniotic fluid,
milk, semen and urine. Mechanistically, the action of
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BPA is related to its homology with estrogen. BPA
prompts the activation of estrogen receptors α (ER-α)
and β (ER-β) [15, 16].
Several studies showed that treatment of 3T3-L1 fibro-

blasts with BPA results in increasing the adipocyte dif-
ferentiation and fat accumulation by stimulating the
activity of lipoprotein lipase (LPL), Glyceraldehyde-3-
phosphate dehydrogenase (GPDH), and peroxisome pro-
liferator- activated receptor-γ (PPARγ), which are all en-
gaged in lipid metabolism and storage [17–21].
Interestingly, 3T3-F442A cells treated with BPA showed
boosted basal and insulin-stimulated glucose uptake via
increasing the gene expression of Glucose transporter
type 4 (GLUT4). It is also confirmed that BPA has an
important role in final differentiation of preadipocytes
into adipocytes by increasing the mRNA level of LPL
and Adipocyte protein 2 (aP2) [21–23].Thus, the present
study was conducted to evaluate the effects of BPA on
adipogenesis in human adipose-derived mesenchymal
stem cells.

Materials and Methods
Cell culture and differentiation
Human adipose-derived mesenchymal stem cells
(hASCs) were obtained from human cells bank of Iran-
ian Biological Resource Center laboratory (Tehran, Iran).
In this experimental study, hASCs were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) supple-
mented with 10% FBS, 2% Glutamine, 100 IU/ml
Penicillin and 100 IU/ml Streptomycin. Cultures were
maintained in humidified atmosphere of 95% air and 5%
CO2 at 37 °C. The media was changed with fresh growth
media every 48 h. After 2 days post confluence, differen-
tiation was initiated. For adipocyte differentiation, cells
in early passage (not exceeding 4 passage) were seeded
at 5.04231 cells/ml, a density pre-optimized for adipo-
genic differentiation. After 24 h, confluent cultures (Day
0) were stimulated to differentiate with adipocyte differ-
entiation medium (Gibco,UK) containing concentrations
of 0.5 mM 3-isobutyl-3-methylxanthine (IBMX), 1 mM
Dexamethasone (DEX), and 5mg/ml human insulin. At
the time of induction of differentiation, mesenchymal
pre-adipocytes were treated with 10− 10 or 10− 8 M of
BPA for 2 weeks. Wells were divided into three experi-
mental groups with at least three parallel wells in each
group: (i) 10− 10 M of BPA with induction; (ii) 10− 8 M of
BPA with induction; (iii) control with induction. After 7
days, media was changed to an adipocyte maintenance
medium (Gibco,UK) and cultured for a further 7 days.
All these mix changes were done in parallel in control
cells. Cells were collected and analyzed at hours 1, 3,
and days 1, 3, 6, and 14 during differentiation. Unless
otherwise stated, all chemicals were from Sigma-Aldrich.

Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)
Total RNA was extracted using the TRIzol reagent
(Sigma-Aldrich) and then, according to manufacturer’s
instructions, RNA was reverse transcribed to cDNA
using the Superscript II Reverse Transcriptase kit (Invi-
trogen). qRT-PCR was performed using the Step One
Plus Real-Time PCR System (Applied Biosystems) and
SYBR Premix Ex Taq II, Tli RNaseH Plus (Takara,
Japan). Primer pairs for PPARγ, C/EBPα, C/EBPβ,
SREBP1c, FASN, LPL and Insulin induced gene-2
(INSIG2) were designed using the Primer-blast software
(NCBI, USA). The 2-ΔΔCt method was used to calculate
fold changes of mRNA expression levels. The genes were
normalized to those of GAPDH. The name and se-
quence of the primers, the sizes, and annealing tempera-
tures for each pair are listed in Table 1.

Oil Red O staining
To assess cellular triglyceride accumulation, adipocyte
cell monolayers were gently rinsed three times with iced
Phosphate-Buffered Saline (PBS) and fixed with 4% Para-
formaldehyde for 30 min. After fixation, the cells were
washed three times and stained with Oil Red O solution
(ORO) for 15 min at room temperature. Cells were
washed again three times with PBS to remove unbound
staining. ORO-stained adipocytes were observed under a
microscope (Olympus, Tokyo, Japan) and digital images
were captured at 100X magnification.

Protein assay
Cells were washed in PBS and lysed in buffer containing
50mM Tris, 150 mM sodium chloride (NaCl), 1% IGEP
AL, 5 mM EDTA (all from Sigma-Aldrich), and protease
inhibitor cocktail (Roche Diagnostics, Laval, QC,
Canada). Tissue Fatty acid binding protein-4 (FABP4),
GLUT4, and ERβ protein concentrations were deter-
mined at days 7 and 14, using the related research spe-
cific enzyme-linked immunosorbent assay (ELISA) kits.
Tissue FABP4 concentration was determined using Hu-
man FABP4 ELISA kit, coefficient of variability (CV) was
calculated the intra assay precision (5.5%). GLUT4 con-
centration was determined by Human GLUT4 ELISA
kit, CV% was calculated the intra assay precision (5.8%).
ERβ concentrations was determined using Human ERβ
ELISA kit, CV% was calculated the intra assay precision
(6.1%). All the research kits were prepared from ZellBio
GmbH, Ulm, Germany and the microplate reader was
Epoch Model, BioTek, Vermont, USA.

Statistical analysis
Data are expressed as means±standard deviation (SD).
The mRNA expressions were determined by analysis of
variance (ANOVA) with repeated measures and 2-tailed
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Student t tests (SPSS 25 for Windows, standard version;
SPSS Inc., Chicago, IL, USA).using GraphPad (GraphPad
Software) and the protein expressions were determined by
Kruskal–Wallis one-way analysis of variance and Dunn’s
multiple comparison test. Means were considered statisti-
cally different when p values were less than 0.05.

Results
To visualize adipogenic differentiation and lipid accumu-
lation, the morphology of the hASC was displayed at
days 6 and 14 of differentiation (Fig. 1). To distinguish
the adipogenesis augmentation by BPA, the mRNA ex-
pression of main adipogenic enzymes and transcription
factors were calculated using qPCR. Mitotic clonal ex-
pansion phase (days 0–2) and terminal differentiation
(days 4–6) are described as the initial and late stages of
adipocyte differentiation respectively [24, 25]. BPA (10−
10 M) inclined to upregulate mRNA expression of

PPARγ (F = 13.03; P = 0.042) in initial period of the ex-
periment. Similarly, mRNA level of PPARγ was in-
creased (F = 30.9; P = 0.026), but did not in the late stage
of differentiation in response to 10− 8 M BPA (Fig. 2a).
The time dependent effects on mRNA levels of main

transcription factors during differentiation were evaluated
to assess the early or late adipogenic signaling effects of
BPA. At 6 days post treatment, the mRNA expression of C/
EBPα was statistically significant increased in response to
BPA concentrations, but continued exposure of the cells to
10− 10M (F = 112.2; P = 0.008) or 10− 8M BPA (F = 33.5;
P = 0.024) caused a significant decline in the mRNA levels
of C/EBPα at 14 days post treatment (Fig. 2b). Interestingly,
while the mRNA expression of C/EBPβ, known as an early
adipogenic transcription factor, was decreased in late phase
of adipogenesis in 10− 8M BPA (F = 172.5; P = 0.006),
higher expression was maintained at day 14 in the treated
cells with 10− 10M BPA (F = 82.2; P = 0.012), (Fig. 2c).

Table 1 The name and sequence of the primers, the sizes, and annealing temperatures for each pair

Gene Size (bp) Sequence (5′→ 3′) Annealing temperature (°C)

GAPDH 113 F:CATGAGAAGTATGACAACAGCCT
R:AGTCCTTCCACGATACCAAAGT

58

PPARγ 80 F:CAGAAATGCCTTGCAGTGGG
R:AACAGCTTCTCCTTCTCGGC

59

CEBPα 94 F:TATAGGCTGGGCTTCCCCTT
R:AGCTTTCTGGTGTGACTCGG

60

CEBPβ 154 F:TTTGTCCAAACCAACCGCAC
R:GCATCAACTTCGAAACCGGC

59

SREBP1c 117 F:TCTCAGTCCCCTGGTCTCTG
R:ATAGGCAGCTTCTCCGCATC

59

INSIG2 114 F:AGTGGTCCAGTGTAATGCGG
R:TGGATAGTGCAGCCAGTGTG

60

LPL 137 F:GCTCAGGAGCATTACCCAGTGTC
R:GCTCCAAGGCTGTATCCCAAGA

63

FASN 107 F:ATTCTGCCATAAGCCCTGTC
R:CTGTGTACTCCTTCCCTTCTTG

57

GAPDH Glyceraldehyde-3-phosphate dehydrogenase, PPARγ Peroxisome proliferator-activated receptor-gamma, C/EBPα CCAAT-enhancer-binding protein-alpha, C/
EBPβ CCAAT-enhancer-binding protein- beta, SREBP1c Sterol regulatory element-binding protein-1c, INSIG2 Insulin induced gene-2, FASN Fatty acid synthase, LPL
lipoprotein lipase

Fig. 1 Oil Red O staining of human adipose-derived mesenchymal stem cells. Phase contrast image of adipocytes were taken by microscope
(Olympus, Tokyo, Japan) and digital images were captured at 100X magnification. Following 14 days of treatment with BPA showed a significant
increase in relative lipid vacuole staining compared with control group
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Markedly, mRNA levels of FASN, known as a marker
of de novo lipogenesis, were increased significantly at
day 6 from the initiation of adipogenic differentiation in
treated cells with 10− 8 M and 10− 10 M BPA (F = 143.8;
P = 0.003) and (F = 57.5; P = 0.012) respectively, while a
significant decline was perceived after day 6 (Fig. 3a). In-
triguingly, BPA (10− 8 M) exposure resulted in dramatic
fluctuations in LPL expression (F = 248.8; P < 0.001),
known as a late marker of adipogenesis, during differen-
tiation. While, mRNA expression of LPL was decreased
in response to 10− 10 M BPA after 6 days post treatment
(F = 366.9; P = 0.003). In 10− 8 M BPA treatment, mRNA
level of LPL was increased during the later period of dif-
ferentiation (day 6+) (Fig. 3b).
Following BPA (10− 10 M) exposure, mRNA expression

of SREBP1c was significantly increased (F = 50.8; P =
0.002) in 6 days post treatment (Fig. 4a). Additionally,
mRNA levels of SREBP1c displayed a significant de-
crease (F = 161.05; P = 0.006) upon BPA (10− 8 M) expos-
ure on day 6 and followed by an increase in the
expression of SREBP1c (Fig. 4a).

On day 6, treatment with 10− 10 M BPA significantly
upregulated mRNA levels of INSIG2 (F = 69.03; P =
0.014), known as an intermediate regulator between
PPARγ and SREBP1c (Fig. 4b). Conversely, the expres-
sion levels of INSIG2 reached to the plateau (F = 19.3;
P = 0.039) by 10− 8 M of BPA (Fig. 4b).
To evaluated the effect of BPA exposure on the levels

of FABP4, other late marker of adipogenesis, we tested
the ability of 10− 10 M or 10− 8 M concentrations of BPA
to induce the adipogenic differentiation of hASCs at day
6 and 14. The results presented a statistically significant
decline in FABP4 protein levels relative to control group
(Table 2). Furthermore, the protein levels of GLUT4
were decreased upon BPA exposure compared to the
control (Table 2).
To report whether ERβ is involved in the action of

BPA through differentiation of human mesenchymal
stem cells, we measured protein levels of ERβ. While in
the treated cells with BPA the expression of ERβ inhib-
ited, the protein expression of ERβ was increased in con-
trol group after 2 weeks of differentiation (Table 2).

Fig. 2 mRNA expression of PPARγ (a), C/EBPα (b) and C/EBPβ (c) in BPA groups during adipogenic differentiation.The relative qPCR values were
corrected to GAPDH expression levels and normalized with respect to controls on each time

Fig. 3 mRNA expression of FASN (a) and LPL (b) in BPA groups during adipogenic differentiation.The relative qPCR values were corrected to
GAPDH expression levels and normalized with respect to controls on each time
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Discussion
BPA is one of the most consumed synthetic compounds
that is leading to proximate abundant exposure among
the population globally and the effect on human meta-
bolic health represented by the environmental level of
BPA have been considerably investigated [6]. Mounting
literature support the environmental obesogen hypoth-
esis that proposes involvement of BPA in adipose tissue
development and function [26, 27]. Evidence demon-
strates that BPA could enhance the adipogenesis [21,
22]. Whereas the most epidemiological studies demon-
strate a significant relationship between BPA and obesity
[28, 29], in vivo and in vitro studies have provided con-
troversial findings [30, 31].

The objective of current study was to examine the
consequences of low doses of BPA on adipogenesis in
the human adipose-derived mesenchymal stem cells as
the in vitro system. Our findings showed that BPA
markedly upregulated the gene expression of C/EBPα,
C/EBPβ, PPARγ, LPL, FASN, and SREBP1c. Because of
the amplified expression of this adipogenic transcription
factors and enzymes, there may be an increase in the ad-
ipogenesis and lipid accumulation in response to BPA.
We observed that BPA treatment declined the expres-
sion of ERβ, GLUT4, and FABP4.
A number of signaling pathways have been recognized

to describe the obesogenic properties of BPA [32–34]. It
has been testified that BPA interacts with Nuclear

Fig. 4 mRNA expression of SREBP1c (a) and INSIG2 (b) in BPA groups during adipogenic differentiation.The relative qPCR values were corrected
to GAPDH expression levels and normalized with respect to controls on each time

Table 2 Comparison of protein expression in BPA groups vs. control

Proteins Time Group Meana Standard Deviation Result

FABP4 Day 6 Control 0.27 0.03 X = 6.5
df = 2
P-value = 0.03*10−8 M BPA 0.23 0.05

10−10 M BPA 0.18 0.02

Day 14 Control 0.32 0.02 X = 9.04
df = 2
P-value = 0.01*10−8 M BPA 0.18 0.006

10−10 M BPA 0.2 0.01

GLUT4 Day 6 Control 0.17 0.03 X = 6.5
df = 2
P-value = 0.03*10−8 M BPA 0.14 0.03

10−10 M BPA 0.11 0.01

Day 14 Control 0.20 0.01 X = 9.04
df = 2
P-value = 0.01*10−8 M BPA 0.11 0.003

10−10 M BPA 0.12 0.009

ERβ Day 6 Control 1.1 0.73 X = 3.84
df = 2
P-value = 0.1†10−8 M BPA 0.92 0.22

10−10 M BPA 0.73 0.09

Day 14 Control 1.29 0.09 X = 9.4
df = 2
P-value = 0.009*10−8 M BPA 0.74 0.02

10−10 M BPA 0.80 0.06

FABP4 Fatty acid binding proteins-4, GLUT4 Glucose transporter-4, ERβ Estrogen receptor beta
ang/mg total protein
*Mean values were significantly different between the groups (P < 0.05)
† Mean values were not significantly different between the groups (P > 0.05)
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Receptors (NR) such as Retinoid X Receptor (RXR), Per-
oxisome Proliferator-Activated Receptors (PPAR), Estro-
gen Receptors (ER), Thyroid Receptors (TR), and
Glucocorticoid Receptors (GR) [35, 36]. Thus, adipo-
genic differentiation and lipid accumulation are induced
by BPA through stimulation of these receptors [37, 38].
Data have pointed out that BPA acts as an obesogene by
triggering signaling over the ER [39–41]. Ohlstein et al
[42] indicated that BPA induced the expression of ER
and the other adipogenic factors PPARγ, C/EBPα, LPL,
and insulin-like growth factor-1 (IFG1) throughout hu-
man stem cells differentiation. Boucher et al [43] showed
that the ER agonist estradiol did not affect the differenti-
ation of human preadipocytes, consistent with previous
researches showing that estrogen had no stimulatory
effect on adipogenesis [44]. BPA is recognized to have
estrogenic characteristics and bind to the estrogen re-
ceptors. However, BPA has presented contradictory con-
sequences of estradiol on differentiation. ER antagonist
(2R,3R)-rel-3-isopropylamino-1-(7-methylindan-4-
yloxy)-butan-2-ol hydrochloride (ICI) was able to sup-
press BPA-induced adipogenesis by downregulating ex-
pression of FABP4 protein levels. Thus, it has been
proposed that BPA may possibly regulate adipogenesis
via a non-classical ER pathway [45, 46]. In the present
study, we showed that hASCs exposure to BPA resulted
in increased mRNA expression of PPARγ, C/EBPα, and
C/EBPβ. It is postulated that BPA interacts with ER and
translocates to nucleus where the mRNA expression of
main adipogenic markers including PPARγ, C/EBPα,
and LPL is augmented and facilitated the differentiation
of stem cells to mature adipocytes [42]. In the existence
of GR, BPA may possibly enhance the transcriptional ac-
tivity of C/EBP family members. It has been formerly
presented that GR boosted the transcriptional activity of
C/EBPβ on the C/EBPα promoter that was facilitated by
DEX [47, 48].
Atlas et al [49] demonstrated that BPA promotes the

adipogenic potential of the 3 T3-L1 cells at concentra-
tions within the range reported in humans [50]. In
addition, studies have reported the effects of BPA at low
concentrations on reducing adipokines production in
adipose tissue [30, 51]. It is well established that the adi-
pogenesis process is driven by a cascade of adipogenic
transcriptional markers including master adipogenic reg-
ulators such as PPARγ and C/EBPs. Consistent with our
findings, further studies have reported that BPA treat-
ment enhanced expression of PPARγ and LPL in 3 T3-
L1 cells [19, 21]. Animal model studies showed that pre-
natal exposure to BPA resulted in inducing PPARγ, C/
EBPα, LPL and developing adipose tissue [31]. Consecu-
tively, these transcriptional factors result in inducing the
expression of proteins such a FABP4 that may play a
role in insulin sensitivity, as well as glucose and lipid

metabolism. Atlas et al [47] showed that BPA increased
FABP4 protein levels dose dependently.
While additional studies indicated that BPA exposure

promoted expression of LPL and PPARγ [19, 21]. Con-
trary to our results, Chamorro-Garcia et al [30] reported
no effect in human BMSCs upon BPA treatment. In
addition, Linehan et al [45] have found that BPA sup-
pressed triglyceride accumulation by inhibiting mRNA
expression of LPL. Interestingly, BPA had no effect on
the expression level of PPARγ, C/EBPα, and FABP4 des-
pite the upregulation of LPL gene, suggesting that LPL
may possibly promote the triglyceride accumulation in-
dependently [45]. BPA had no effect on the mRNA ex-
pression of FAS, a key regulator of de novo lipogenesis,
proposing a minimal role of de novo lipogenesis in
hASCs [45].

Conclusions
The present research has evidenced that when human
mesenchymal stem cells were chronically treated with
BPA, alterations in induction of adipogenic related genes
happened. Further studies are needed for better under-
standing of the BPA molecular mechanisms in modifying
adipogenesis and fat accumulation.
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