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Abstract 

Next-generation RNA sequencing (RNA-Seq) has identified more differentially expressed protein-coding genes 
(DEGs) and provided a wider quantitative range of expression level changes than conventional DNA microarrays. 
JEMS·MMS·Toxicogenomics group studied DEGs with targeted RNA-Seq on freshly frozen rat liver tissues and on 
formalin-fixed paraffin-embedded (FFPE) rat liver tissues after 28 days of treatment with chemicals and quantitative 
real-time PCR (qPCR) on rat and mouse liver tissues after 4 to 48 h treatment with chemicals and analyzed by principal 
component analysis (PCA) as statics. Analysis of rat public DNA microarray data (Open TG-GATEs) was also performed. 
In total, 35 chemicals were analyzed [15 genotoxic hepatocarcinogens (GTHCs), 9 non-genotoxic hepatocarcinogens 
(NGTHCs), and 11 non-genotoxic non-hepatocarcinogens (NGTNHCs)]. As a result, 12 marker genes (Aen, Bax, Btg2, 
Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) were proposed to discriminate GTHCs from NGTHCs 
and NGTNHCs. U.S. Environmental Protection Agency studied DEGs induced by 4 known GTHCs in rat liver using DNA 
microarray and proposed 7 biomarker genes, Bax, Bcmp1, Btg2, Ccng1, Cdkn1a, Cgr19, and Mgmt for GTHCs. Studies 
involving the use of whole-transcriptome RNA-Seq upon exposure to chemical carcinogens in vivo have also been 
performed in rodent liver, kidney, lung, colon, and other organs, although discrimination of GTHCs from NGTHCs was 
not examined. Candidate genes published using RNA-Seq, qPCR, and DNA microarray will be useful for the future 
development of short-term in vivo studies of environmental carcinogens using RNA-Seq.

Keywords RNA-Seq, DNA microarray, qPCR, Rodent short-term in vivo test, Genotoxic carcinogen, Non-genotoxic 
carcinogen, Non-carcinogen

Background
Lovett published the article “Toxicogenomics: Toxicolo-
gists brace for genomics revolution” in Science in 2000. 
He described the new approach of toxicogenomics, in 
which DNA microarrays are used to profile gene expres-
sion in cells exposed to test compounds [1]. Quantitative 
real-time PCR (qPCR) has been used independently or to 
confirm DNA microarray results [2, 3]. However, RNA-
Seq is now an important tool for examining the role of 
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the transcriptome in biological processes [4], which could 
surpass DNA microarray and qPCR [5, 6]. Nevertheless, 
to date, only a small number of studies have been pub-
lished on the discrimination of GTHCs from NGTHCs 
and NGTNHCs using RNA-Seq-based toxicogenomics 
[5–31] (File 1).

Carcinogenicity testing plays an essential role in iden-
tifying carcinogens in environmental chemistry and 
pharmaceutical drug development. However, it is a time-
consuming and labor-intensive process to evaluate the 
carcinogenicity with conventional 2-year rodent-based 
animal studies [32]. There is thus an increased need to 
develop novel alternative approaches to these rodent bio-
assays for assessing the carcinogenicity of substances [33].

Carcinogens have conventionally been divided into two 
categories according to their presumed mode of action: 
genotoxic carcinogens (GTCs) and non-genotoxic carcino-
gens (NGTCs). An OECD expert group defined that a GTC 
has the potential to induce cancer by interacting directly 
with DNA and/or the cellular apparatus involved in pre-
serving the integrity of the genome, while an NGTC has the 
potential to induce cancer without interacting directly with 
either DNA or the above-mentioned apparatus [34].

Bevan and Harrison asserted that genotoxic carcino-
gens are usually identified based on positive results 
in different in  vitro and in  vivo test systems, includ-
ing detection of DNA strand breaks, unscheduled DNA 
synthesis, sister chromatid exchange, DNA adduct for-
mation, mitotic recombination, and gene mutation. Typi-
cal tests of mutagenicity include the Ames test, in vitro 
metaphase chromosome aberration assay, in vitro micro-
nucleus assay, and mouse lymphoma L5178Y cell Tk (thy-
midine kinase) gene mutation assay, in vivo micronucleus 
assay in rodents, and transgenic rodent mutation assay. 
NGTCs are considered to have a threshold for exerting 
hazardous effects and guidelines regarding appropriate 
levels of exposure to them are set by the various authori-
tative bodies in the same way as for other hazardous 
substances. Bevan and Harrison recommend that clear 
differentiation between threshold and non-threshold car-
cinogens should be made by all expert groups and regu-
latory bodies dealing with carcinogen classification and 
risk assessment [35].

RNA-Seq has identified more DEGs and provided a 
wider quantitative range of expression level changes 
than conventional DNA microarrays. Because of its 
wider dynamic range as well as its ability to identify a 
larger number of DEGs, RNA-Seq may generate more 
insight into mechanisms of toxicity and mode of action 
(MOA) [6]. In this context, the successful development of 
a short-term in  vivo assay in rodents for discriminating 
GTCs, NGTCs, and non-carcinogens (NCs) using RNA-
Seq would be valuable.

Only a few papers have been published on discrimi-
nating GTCs from NGTCs using RNA-Seq in vivo [8, 9]. 
Therefore, this review also includes data on discriminat-
ing GTCs, NGTCs, and NHCs using DNA microarray 
and qPCR [36–47], as these data would be helpful in cre-
ating a toxicogenomics database. This review also incor-
porates recent reports on whole-transcriptome RNA-Seq 
on animals in vivo, in the liver, kidney, and other organs, 
although reports did not include the discrimination of 
GTCs from NGTCs [5–31].

In this manuscript, we introduce candidate marker 
genes published using RNA-Seq, qPCR, and DNA 
microarray to develop RNA-Seq to discriminate GTCs, 
NGTCs, and NCs among the chemicals to which humans 
are exposed in daily life.

Discrimination of GTHCs and NGTHCs and/or NGTNHCs 
using DNA microarray and qPCR in vivo
In the early days of toxicogenomics research, Ellinger-
Ziegelbauer et  al. reported DEGs in rat liver upon 
exposure to 4 GTHCs [  2-nitrofluorene (2NF), dimeth-
ylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK), and aflatoxin B1 (AFB1)] 
and 4 NGTHCs [methapyrilene (MPy), diethylstilbestrol 
(DES), Wy-14643, and piperonylbutoxide (PBO)] for 
1–14  days using DNA microarray and the support vec-
tor machine (SVM) algorithm as a statistical analysis 
[36–38]. They presented marker genes, such as Cdkn1a, 
Ccng1, and Mgmt for GTHCs and Apex1, Pcna, Cdk1, 
Ccnb1, Rps27, Hspd1, and Hspa9 for NGTHCs, whose 
expression was characteristically changed upon exposure 
to these carcinogens [36].

In the form of collaborative studies of the Toxicog-
enomics/The Japanese Environmental Mutagen Society 
·Mammalian Mutagenicity Study Group (JEMS·MMS), 
Furihata et  al. conducted research to discriminate 
GTHCs from NGTHCs and/or NGTNHCs using rodent 
liver [3, 39–43]. They selected 50 candidate marker genes 
and Gapdh as a control gene for normalization based 
on their preliminary results with nine chemicals using 
an original DNA microarray and Affymetrix GeneChip 
Mu74AV2. They reported the dose-dependent changes of 
expression determined by qPCR at 4  h and 28  days for 
50 genes in the liver of mice treated with a single dose 
of two N-nitroso GTHCs, diethylnitrosamine (DEN) 
and ethylnitrosourea (ENU), as shown in Fig.  1 [40]. 
Next, they studied the effects of 12 chemicals on mouse 
liver at 4 and 48 h after their single dosing and success-
fully discriminated eight GTHCs [2-acetylaminofluorene 
(2AAF), 2,4-diaminotoluene, diisopropanolnitrosamine, 
4-dimethylaminoazobenzene, NNK, N-nitrosomor-
pholine, quinoline, and urethane] from four NGTHCs 
[1,4-dichlorobenzene, dichlorodiphenyltrichloroethane, 
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di(2-ethylhexyl)phthalate (DEHP), and furan] using 
qPCR and PCA, as shown in Fig. 2 [41]. They also identi-
fied by qPCR that 4 and 48  h after administration were 

key time points from the time-dependent changes in 
gene expression during the acute phase (4 to 48  h) fol-
lowing the administration of chrysene [42]. Additionally, 

Fig. 1 Cluster analysis of gene expression in mouse liver after DEN treatment quantified by qPCR. The expression of 50 genes was clustered by 
hierarchical clustering after DEN treatment. Results of 4 h and 28 days after a single shot were analyzed separately. The color displays show the 
log2 (expression ratio) as (1) red when the treatment sample is up-regulated relative to the control sample, (2) blue when the treatment sample 
is down-regulated relative to the control sample, and (3) white when the log2 (expression ratio) is close to zero [40]. At 4 h, all 20 Grp 1 genes 
showed a dose-dependent increase of more than 3–64-fold. Twelve Grp 2 genes were suggested to have a gradual dose-dependent increase of 
less than that for the expression in Grp1. Two Grp 4 genes exhibited a dose-dependent decrease of less than 0.3-fold. Fifteen Grp 3 genes showed 
few changes in gene expression. At 28 days, three Grp 1 genes showed a dose-dependent increase of more than four-fold. Seventeen Grp 2 genes 
were suggested to have a gradual dose-dependent increase, though less than that for the expression in Grp 1. Ungrouped Igfbp1 showed a 
dose-dependent decrease of less than 0.3-fold. 22 Grp 3 genes showed fewer changes in gene expression
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in rat liver, they successfully discriminated two GTHCs 
(DEN and 2,6-dinitrotoluene) from an NGTHC (DEHP) 
and an NGTNHC (phenacetin) at 4 and 48 h, as shown 
in Fig.  3 [43]. They then proposed 12 candidate marker 
genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, 
Mbd1, Phlda3, Plk2, and Tubb4b) (JEMS/MMS marker 
genes) to discriminate GTHCs and NGTHCs and/or 
NGTNHCs. Subsequent gene pathway analysis on these 
genes by Ingenuity Pathway Analysis indicated that they 
are particularly involved in the DNA damage response, 
resulting from the signal transduction of a p53-class 
mediator leading to the induction of apoptosis. These 
studies suggest that the application of PCA to the gene 
expression profile in rodent liver during the acute phase 
is useful for predicting that a chemical is a GTHC rather 
than an NGTHC and/or an NGTNHC [41, 43].

U.S. Environmental Protection Agency (EPA) studied 
DEGs induced by 4 known GTHCs: 2NF, AFB1, NNK, 
and DMN in rat liver and proposed 7 biomarker genes, 
Bax, Bcmp1, Btg2, Ccng1, Cdkn1a, Cgr19, and Mgmt for 
GTHCs [44]. Four genes, Bax, Btg2, Ccng1, and Cdkn1a 
were also proposed as GTHC-associated DEGs by Furi-
hata et al. [41, 43].

Park et  al. studied DEGs induced by 2 GTHCs (2AAF 
and DEN), 1 GTC, melphalan, and 1 NGTNC, 1-naph-
thylisothiocynate in rasH2 mouse liver upon repeated 
administrations for 7- and 91- days using DNA micro-
array and qPCR and presented the results in a heatmap. 

They selected 68 significantly deregulated genes that 
represented a GTHC-specific signature; these genes 
were commonly deregulated in both the 2AAF- and 
DEN-treated rasH2 mice, namely, 52 up-regulated genes, 
including Aen, Bax, Btg2, Ccng1, Cdkn1a, Ddit4l, Plk2, 
Mdm2, Phlda3, and Tubb4b as also proposed as GTHC-
associated DEGs upon exposure to DEN and 2AAF by 
Furihata et al. [41, 43], and 16 down-regulated genes, [45].

Kossler et al. examined a total of 13 chemicals, includ-
ing 3 known GTHCs: (C.I. Direct Black 38, DMN, and 
4,4’-methylenedianiline), 3 NGTHCs: (1,4-dichloroben-
zene, phenobarbital sodium, and piperonyl butoxide), 4 
NHCs (medical drugs;): cefuroxime sodium, nifedipine, 
prazosin hydrochloride, and propranolol hydrochloride), 
and 3 chemicals exhibiting ambiguous results in geno-
toxicity testing: (cyproterone acetate, thioacetamide, and 
Wy-14643), in CD-1 mouse liver after their oral adminis-
tration for 3 and 14 days. They proposed 51 marker can-
didate genes for differentiating GTHCs from NGTHCs 
and NHCs (Table  1) and 58 marker candidate genes 
for differentiating NGTHCs from GTHCs and NHCs 
(Table 2) in mouse liver, as examined with DNA micro-
array, in the course of the IMI MARCAR (Innovative 
Medicines Initiative/Biomarkers and molecular tumor 
classification for non-genotoxic carcinogenesis) project, 
involving a European consortium of partners in EFPIA 
“a research-based pharmaceutical industry operation in 
Europe” and academics [46]. Using two-step heatmaps, 

Fig. 2 Principal component analysis (PCA) of the gene expression levels in mouse liver after a single shot between genotoxic and non-genotoxic 
hepatocarcinogens as quantified by qPCR. A 4 h with 7 genes (Btg2, Ccnf, Ccng1, Lrp1, Mbd1, Phlda3, and Tubb2c), B 48 h with 12 genes (Aen, Bax, 
Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb2c). GTHCs (red-colored, DIPN: diisopropanolnitrosamine, NNK: 4-(methylni
trosamino)-1-(3-pyridyl)-1-butanone, NNM: N-nitrosomorpholine, QN: quinoline, DAT: 2,4-diaminotoluene, DAB: 4-dimethylaminoazobenzene, 
2AAF: 2-acetylaminofluorene, URE: urethane) and NGTHCs (bleu-colored, FUR: furan, DDT: dichlorodiphenyltrichloroethane, DEHP: di(2-ethylhexyl)
phthalate, DCB: 1,4-dichlorobenzene). A dashed line is added between genotoxic and non-genotoxic hepatocarcinogens [41]
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they suggested successfully discriminating GTHCs, 
NTHCs, and NHCs.

Discrimination of GTHCs and NGTHCs and/or NGTNHCs 
in public DNA microarray data by PCA
Furihata and Suzuki analyzed in  vivo rat data from 
the public DNA microarray data, in Open TG-GATEs 
[(Database Description—Open TG-GATEs | LSDB 
Archive (biosciencedbc.jp)] with the 12 mouse marker 
genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, 

Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) (JEMS/MMS 
marker genes) [47]. They analyzed the data associ-
ated with exposure to a total of 23 chemicals: 5 typical 
rat GTHCs (2AAF, AFB1, 2-nitrofluorene, DEN, and 
N-nitrosomorpholine), 7 typical rat NGTHCs (clofibrate, 
ethanol, fenofibrate, gemfibrozil, hexachlorobenzene, 
phenobarbital, and WY-14643), and also 11 NGTNHCs 
(allyl alcohol, aspirin, caffeine, chlorpheniramine, chlor-
propamide, dexamethasone, diazepam, indomethacin, 
phenylbutazone, theophylline, and tolbutamide) from 

Fig. 3 Principal component analysis (PCA) of the gene expression levels under treatment with 3 types of carcinogens in rat liver as quantified by 
qPCR. GTHCs (red-colored, DEN-L: DEN low dose, DEN-M: DEN middle dose, DEN-H: DEN high dose, DNT-L: DNT low dose and DNT-H: DNT high 
dose), an NGTHC (green-colored, DEHP-L: DEHP low dose and DEHP-H: DEHP high dose), and an NGTNHC (blue-colored, PNT-L: PNT low dose and 
PNT-H: PNT high dose). A 4 h, with 16 genes (Ccnf, Ccng1, Cyp4a1, Ddit4l, Egfr, Gadd45g, Gdf15, Hspb1, Ighbp1, Jun, Myc, Net1, Phlda3, Pml, Rcan1, 
and Tubb2c), B 48 h, with 10 genes (Aen, Ccng1, Cdkn1a, Cyp21a1, Cyp4a1, Gdf15, Igfbp1, Mdm2, Phlda3, and Pmm1). PCA successfully differentiated 
GTHCs (red circle) from an NGTHC (green circle) and an NGTNHC (blue circle) with principal component 1 at 4 and 48 h [43]

Table 1 GTHC biomarker candidates in mouse liver proposed by Kossler et al. [46]

Up-regulated genes by GTHC:

DNA damage response: Bax, Bcl2a1, Ccng1, Ddit4l, Emp3, Enc1, Iqgap1, Map3k20, Mgmt, Phlda3, Pierce1, Siva1, Top2a, 
Tspan13, Zeb2

Cellular assembly and organization: Col1a2, Fbn1, Fstl1, Loxl2, Nisch, Plekha2, Tagln2, Tmsb10, Tuba1a

Immune response: Ccr2, Cd34, Fgl2, H2-Dma, H2-DMb2, Lck, Mbl2

Detoxification response: Ces2e, Gstp3

Others: Acot9, Akap13, Atp6v1d, Ccdc80, Cox6b2, Exoc4, G6pdx, Ggta1, Pqlc3, Snx6, Zdhhc14, Zfp54, Zfp958

Down-regulated genes by GTHC:

DNA damage response: Bcor

Others: Dleu2, Ltn1, Moxd1, Srprb
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Open TG-GATEs. The analysis was performed 3, 6, 9, 
and 24  h after a single administration and 4, 8, 15, and 
29 days after repeated administrations. Genes that were 
differentially expressed in a dose-dependent manner that 
was specific to GTHCs were observed, and their signifi-
cance was assessed using the Williams test during 3–24 h 
and 4–29  days. PCA successfully discriminated GTHCs 
from NGTHCs and NGTNHCs at 24  h and 29  days, as 
shown in Fig.  4 [47]. The results demonstrated that 12 
previously proposed mouse marker genes (JEMS/MMS 
marker genes) are useful for discriminating rat GTHCs 
from NGTHCs and NGTNHCs.

In another study, Kanki et al. studied 13 NGTHCs with 
various MOA from OPEN TG-GATEs (28  days) and 
selected 42 genes that were up-regulated and 8 that were 
down-regulated upon exposure to them [48]. However, 
none of them coincided with the 55 genes associated with 
NGTHCs exposure proposed by Kossler et  al. [46]. It is 
considered that the reason for this discrepancy is that 
NGTHCs were compared only with the control but not 
with GTHCs in the study [48].

Discrimination of GTHCs from NGTHCs using RNA-Seq 
in short-term in vivo test
Furihata et al. used intact RNA derived from freshly fro-
zen rat liver tissues after 4 weeks of the feeding of chemi-
cals in the water or the food [8]. Using targeted RNA-Seq 
with specific primers for 12 candidate marker genes 
(JEMS/MMS marker genes) previously proposed by 

Furihata and Suzuki [47] and sample-specific sequence 
tags, they evaluated the rat hepatocarcinogen 1,4-diox-
ane (DO) with ambiguous genotoxicity compared with 
typical GTHCs, DEN and 3,3-dimethylbenzidine·2HCl 
(DMB), and an NGTHC, DEHP. Gene expression profiles 
of the 12 genes under DO treatment differed significantly 
from those with DEN and DMB, as well as DEHP. Finally, 
PCA successfully differentiated GTHCs from DEHP and 
DO using these 11 genes (Aen, Bax, Btg2, Ccnf, Ccng1, 
Cdkn1a, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b), as 
shown in Figs.  5 and 6 [8]. The present results suggest 
that RNA-Seq and PCA are useful for differentiating typi-
cal GTHCs and typical NGTHCs in the rat.

Discrimination of a GTHC from an NGTHC using RNA-Seq 
with formalin-fixed paraffin-embedded (FFPE) samples
Furihata et  al. used  RNA-Seq with FFPE samples from 
rat liver tissues after 4  weeks of the feeding of chemi-
cals in the water or the food [9]. Specifically, targeted 
RNA-Seq was applied to FFPE samples to analyze 12 
genes (JEMS/MMS marker genes) as potential mark-
ers for rat responses to GTHCs and NGTHCs, with the 
comparison between a typical GTHC, 2AAF, and p-cre-
sidine (CRE), the genotoxicity of which is ambiguous. 
2AAF induced remarkable differences in the expression 
of eight genes (Aen, Bax, Btg2, Ccng1, Gdf15, Mbd1, 
Phlda3, and Tubb4b) from that in the control group, 
while CRE only induced expression changes in Gdf15, 
as shown by Tukey’s test. Meanwhile, gene expression 

Table 2 NGTHC biomarker candidates in mouse liver proposed by Kossler et al. [46]

Up-regulated genes by NGTHC:

Cell cycle progression: Hnf4aos (0610008F07Rik), Nsl1, Rorc

Apoptosis: Pgap2

Detoxicification response: Ces2a, Cyp2c250, Cyp2c65, Gstm1

Cellular assembly and organization: Nebl

Others: Akr1d1, Atosa, Atxn10, Dgka, Fam171a1, Fndc5,

Ginm1 (BC013529Rik), Gm10419, Gm2011, Pnliprp1,

Tulp2, Zkscan14, 2810433D01Rik, 4930597L12Rik, 4931406C07Rik

Down-regulated genes by NGTHC:

DNA damage response: Armt1

Cell cycle progression: Aigl, Atad2, Fgl1, Mcm5, Ncapg2, Pola1, Prkd2, Tead1

Apoptosis: Nolc1, Tnfrsf1b

Cellular assembly and organization: Pkp2

Immune response: Cebpb

Others: Camkk2, Coa6 (1810063B05Rik), Gnat1, Grhl1, Grk3, Gtf2b, Hip1r,

Nr2c2, Pla2g16, Prdm15, Rasal2, Samd4a, Slc25a32, Tmem98,

 Tmem181c-ps, Tmem268, Zfp472, Zfp750, A930036K24Rik,

 2310075K07Rik, 5430416B10Rik,
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Fig. 4 Analysis of rat liver public data (OPEN TG-GATEs, DNA microarray). Discrimination of GTHCs from NGTHCs and NGTNHCs at 24 h after a 
single administration and 29 days after repeated administrations by PCA with 12 marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, 
Mbd1, Phlda3, Plk2, and Tubb2c). The mean of each control group was calculated as 0 (log2), and ratio (exp/cont) log2 was calculated. These 
numerical values were analyzed by PCA. At 24 h, five GTHCs (brown-colored, AAF, AFL, DEN, NNM, and 2NF) were discriminated from seven NGTHCs 
(yellow-colored, CLO, ETH, FEN, GEM, HEX, PHE, and WY) (A); and five GTHCs (AAF, AFL, DEN, NNM, and 2NF) were discriminated from 11 NGTNHCs 
(blue-colored, AA, ASP, CAF, CPA, CPP, DEX, DIA, IND, PBZ, THE, and TOL) (B), with each of the three doses (low, middle and high) and five GTHCs 
to seven NGTHCs plus 11 NGTNHCs (C). At 29 days, two GTHCs (AAF and DEN) were discriminated from seven NGTHCs (CLO, ETH, FEN, GEM, HEX, 
PHE, and WY) (D), two GTHCs (AAF and DEN) from 10 NGTNHC (AA, ASP, CAF, CPA, CPP, DIA, IND, PBZ, THE, and TOL) (E), and two GTHCs from seven 
NGTHCs plus 10 NGTNHCs (F), with each of the three doses (low, middle and high except DEN). Each group is discriminated with a dashed line. 
GTHCs [AAF: 2- acetamidofluorene, AFL: aflatoxin B1, 2NF: 2-nitrofluorene, DEN: N-nitrosodiethylamine and NNM: N-nitrosomorpholine], NGTHCs 
[CLO: clofibrate, ETH: ethanol, FEN: fenofibrate, GEM: gemfibrozil, HEX: hexa-chlorobenzene, PHE: phenobarbital, and WY: WY-14643] and NGTNHCs 
(mostly pharmaceutical drugs) [AA: allyl alcohol, ASP: aspirin, CAF: caffeine, CPA: chlorpheniramine, CPP: chlorpropamide, DEX: dexamethasone, DIA: 
diazepam, IND: indomethacin, PBZ: phenylbutazone, THE: theophylline, and TOL: tolbutamide]. Each group is enclosed with a dashed ellipse [47]
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profiles for nine genes (Aen, Bax, Btg2, Ccng1, Cdkn1a, 
Gdf15, Mbd1, Phlda3, and Plk2) differed between sam-
ples treated with 2AAF and CRE. Finally, PCA of 12 
genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, 

Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) (JEMS·MMS 
marker genes) using our previous Open TG-GATE data 
[47] plus 2AAF and CRE successfully differentiated 
2AAF, as a GTHC, from CRE, as an NGHTC (Fig. 7) [9]. 

Fig. 5 Analysis by RNA-Seq in rat liver after 28 days of repeated treatment. Discrimination of typical GTHCs (DEN and DMB) to a typical NGTHC 
(DEHP) and DO by PCA. The mean of each control group was calculated as 0 (log2) and ratio (exp/cont) log2 was calculated. GTHCs (DEN, orange 
and DMB, brown) were differentiated from DEHP (blue) with PC1. DO (pale blue) was differentiated from typical GTHCs (DEN and DMB) and a typical 
NGTHC (DEHP). DEN: N-nitrosodiethylamine, DMB: 3,3-dimethylbenzidine·2HCl, DEHP: di(2-ethylhexyl)phthalate, and DO: 1,4-dioxane [8]

Fig. 6 PCA analysis of the results of RNA-Seq experiment together with our previous analysis of public data from TG-GATEs [47]. DEN* (dark orange), 
DMB* (brown), DEHP* (blue), and DO* (pale blue) are from the RNA-Seq experiment. Four typical GTHCs [DEN* (RNA-Seq, dark orange), DMB* 
(RNA-Seq, light brown), DEN (TG-GATEs, dark brown), and AAF (GT-GATEs, dark brown)] were clearly discriminated from eight NGTHCs [DEHP* 
(RAN-Seq, blue) and 7 NGTHCs [(TG-GATEs, blue), clofibrate, ethanol, fenofibrate, gemfibrozil, hexachlorobenzene, phenobarbital, and WY-14613] 
plus 10 NGTNHCs [(TG-GATEs, blue), allyl alcohol, aspirin, caffeine, chlorpheniramine, chlorpropamide, diazepam, indomethacin, phenylbutazone, 
theophylline, and tolbutamide] with PC1. However, DO* (pale blue) from RNA-Seq data may be intermediate between typical GTHCs and the group 
of typical NGTHCs plus NGTNHCs. Each point shows the mean of five animals for RNA-Seq [8] and three animals for TG-GATEs [47]
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It was thus concluded that targeted RNA-Seq on FFPE 
samples and PCA are useful for evaluating a typical rat 
GTHC and an NGTHC.

Recent whole-transcriptome RNA-Seq reports on in vivo 
analyses in animal liver, kidney, and other organs
Liver
Various whole-transcriptome RNA-Seq studies on the 
effects of hepatocarcinogens in rodent liver have been 
reported [5, 6, 10–18, 23], although they did not examine 
the discrimination of GTHCs from NGTHCs.

Li et  al. examined rat livers treated with a GTHC, 
AFB1, for 5 days and analyzed the effects using RNA-Seq, 
TempO-Seq, DNA microarray, and qPCR. They showed 
that RNA-Seq revealed toxicological insights from path-
way enrichment, with overall higher statistical power 
compared with TempO-seq and DNA microarray. They 
detected 862 DEGs (491 up-regulated and 371 down-reg-
ulated by AFB1) in HiSeq2000 and confirmed 11 up-reg-
ulated genes (Ccnb1, Cenpw, G6pd, Nt5dc2, Pttg1, Spp1, 
Stmn1, Tacc3, Tk1, Ube2c, and Ube2t) by qPCR [10].

In another study, Nault et  al. examined an NGTHC, 
acetamide, in rat liver after treatment for 7 and 28 days. 
They showed the DEGs results using heatmaps. They 
reported 9 up-regulated genes: (E2f4, Ar, Mybl1, Kdm6a, 
Sox2, Mycn, Sry, Mybl2, and EF1) and 10 down-regulated 
ones: (Esr1, Rxr, Ppara, LXRalpha, Pparg, Cebpa, Egr1, 
Cebpb, Foxo1, and Foxp1). Additionally, they wrote com-
plex increase/decrease in the following genes Hebp2, 
Acot1, Ifit1, Cenpw, Chek2, Parpbp, Cyp17a1, Slc7a1, and 
Prom1 in the paper [11].

Elsewhere, Gong et  al. reported that the US FDA-
led SEQC (i.e., MAQC-III) project conducted a 

comprehensive study focusing on the transcriptome pro-
filing of rat liver samples treated with 27 chemicals with 
various MOA for 3 to 7 days to evaluate the utility of RNA-
Seq in safety assessment and elucidating the mechanism of 
toxicity [12].

Moreover, Bushel et  al. examined the effects of treat-
ment with 15 chemicals with various MOA for 3 to 7 days 
in rat liver and presented the data obtained by DNA 
microarray, RNA-Seq, and Tempo-Seq in a heatmap [13].

Kidney
Li et al. studied the effects of a carcinogenic dose of aris-
tolochic acid for 12 weeks in rat kidney.

Four thousand fifty one up-regulated and 2743 down-
regulated mRNAs were observed and 43 up-regulated 
and 20 down-regulated miRNAs were observed as meas-
ured by PCA and hierarchical clustering analysis [19].

Lung
Israel et al. reported DEGs induced by a GTC, 1,3-buta-
diene, in mouse liver, lung, and kidney for 2 weeks. They 
performed RNA-Seq, identification of accessible chro-
matin (ATAC-seq), and characterization of regions with 
histone modifications associated with active transcrip-
tion (ChIP-seq for acetylation at histone 3 lysine 27, 
H3K27ac). Most changes were restricted to lung tissue. 
The results were shown in heatmaps. They showed that 
the DEGs were involved in Phase I metabolism (58 Cyp 
family members and 12 others), Phase II metabolism (58 
genes), and IFNγ signaling (75 genes) [15].

Additionally, Felley-Bosco and Rehrauer reported 
RNA-Seq data from asbestos-exposed mice. In that 
study, an asbestos suspension was injected every 

Fig. 7 Discrimination of FFPE-AAF from FFPE-CRE [9] together with the previous rat GTHCs, NGTHCs, and NGTNHCs calculated from public Open 
TG-GATEs data [47] using PCA. FFPE data show individual results and TG-GATEs data show the mean of three rats at each point. Red: FFPE-AAF, 
brown: AAF at 24 h from Open TG-GATEs, light brown: AAF on 29 days from Open TG-GATEs, black: GTHCs from Open TG-GATEs. Yellow: FFPE-CRE, 
blue: NGTHCs from Open TG-GATEs, light blue: NGTNHCs from Open TG-GATEs. Two points of FFPE-CRE (− 0.042/ − 3.26 and − 0.08/ − 3.26) 
overlapped. Five typical GTHCs [2-acetamidofluorene (AAF), AFL, DEN, 2NF, and NNM at 24 h and AAF and DEN on 29 daysin Open TG-GATEs data] 
were separated from the seven typical NGTHCs (CLO, ETH, FEN, GEM, HEX, PHE, and WY at 24 h and 29 days in TG-GATEs data) and eleven NGTNHCs 
(AA, ASP, CAF, CPA, CPP, DEX, DIA, IND, PBZ, THE, and TOL at 24 h and 29 days in Open TG-GATEs data) using PCA. Two groups of GTHCs and (NGTHCs 
and NGTNHCs) were separated using PC1 (− 0.637 for DEN 24L against − 0.159 for FEN 24 M). The dashed line is the border line of the two groups. 
FFPE-AAF in the GTHCs group was separated from FFPE-CRE grouped in NGTHCs [9]
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3 weeks for eight rounds and an examination was per-
formed 33  weeks after the first injection. They per-
formed data mining of publicly available datasets to 
evaluate how noncoding RNA contributes to mesothe-
lioma heterogeneity. Nine noncoding RNAs (Fendrr, 
Gm26902, Gm17501, Meg3, miR 17–92 cluster, Dubr, 
and Firre) were specifically elevated in mesothelioma 
tumors and shown to contribute to the heterogeneity 
of human mesothelioma. Because some of these RNAs 
have known oncogenic properties, this study supported 
the concept that noncoding RNAs can act as cancer 
progenitor genes [20].

Colon
Guo et  al. reported mechanisms of mouse colitis-accel-
erated colon carcinogenesis induced by azoxymethane/
dextran sulfate sodium treatment for 22  weeks. The 10 
most up-regulated genes in tumors were Alb, Alox15, 
Clca4, Cxcl6, Lyz, Mmp7, Mmp10, Pnliprp 1, Slc30a2, 
and Wif1, while the 10 most down-regulated ones were 
Ca3, Chrna3, Folh1, Nos1, Pln, Retnlb, Sst, Stmn3, Sycn, 
and Zcchc12 [21].

Pancreas
Asahina et al. reported that alcohol intake for 5 months 
induced pancreatic ductal adenocarcinoma in Pdx-
1Cre; LSL-KrasG12D  mutant mice.  Whole RNA-seq 
analysis revealed that the consumption of alco-
hol increased the expression of markers for tumors 
(Epcam,  Krt19,  Prom1,  Wt1, and  Wwtr1), stroma 
(Dcn, Fn1, and Tnc), and cytokines (Tgfb1  and Tnf) and 
decreased the expression of Fgf21 and Il6  in the pancre-
atic tumor tissues [22].

Discussion
Kinaret et  al. [49] asserted that, although the advent of 
high-throughput hybridization-based technologies, such 
as DNA microarrays, significantly boosted the generation 
of large-scale gene expression profiles, recent advances in 
sequencing technologies further improved such capabil-
ity. For instance, RNA-Seq allows the detection of gene 
expression with an increased dynamic range, solving the 
problem of probe saturation for highly expressed tran-
scripts. Furthermore, RNA-Seq does not need a priori 
knowledge about the genomic sequence of the studied 
organism and does not suffer from the above-mentioned 
cross-hybridization events, especially in the analysis of 
complex genomes. As a consequence, RNA-Seq allows 
de novo transcript discovery to be performed to iden-
tify unannotated transcripts and characterize new tran-
scripts generated by alternative splicing. However, an 
appropriate analytical plan should be made to avoid or 

mitigate certain biases that could occur during the data 
management and analysis. For instance, previous works 
[49] showed that standard normalization procedures can 
affect the sensitivity of differential expression analysis, 
reflecting the behavior of a relatively small number of 
either high-count or ubiquitous genes. RNA-Seq typically 
produces larger and more complex data, which require 
more time and more sophisticated analytical approaches, 
than in DNA microarray experiments, for example. 
Although transcriptome profiling is increasingly being 
employed in toxicogenomic experiments, the analytical 
pipelines are still far from being standardized. To date, 
no benchmark of the optimal analytical procedures in 
transcriptome profiling in toxicogenomic experiments 
has been formulated. Recently, the reduction of the cost 
of analyzing a single transcriptome made the accomplish-
ment of large-scale studies possible, which have been 
carried out by international programs such as CMAP, 
TOX21, and LINCS1000 [49].

Comparing RNA-Seq with qPCR and DNA micro-
array, RNA-Seq is reflecting the absolute amount of 
RNA expression more directly than others as read 
counts. The reliability of the results can be confirmed 
by sequence without a disturbance of mismatch in 
probes or primers and is applicable for alternative splic-
ing. The qPCR method is easy to perform and does not 
require advanced experience but is applicable only after 
the selection of target genes. It is not a comprehensive 
method compared to total RNA-seq or DNA microar-
ray. The DNA microarray methods require many steps 
and skills and have more variances among different 
platforms. The reliability of the results is slightly lower 
than the other two methods. The major results should 
often be confirmed by qPCR. From the analysis of pre-
vious DNA microarray papers, we have learned that the 
marker genes differ depending on the type of chemicals 
studied. The marker genes in previous DNA microarray 
papers do not always match. It would be useful to exam-
ine published DNA microarray papers to identify candi-
date marker genes, and it would be useful to accumulate 
RNA-Seq (whole) data, which is more reliable than DNA 
microarray, to converge the marker genes. This requires 
easy-to-use bioinformatics.

Kinaret et al. [49] introduced the following public data.

Chemical Effects in Biological Systems (CEBS, 
Chemical Effects in Biological Systems; nih.gov) [50, 
51],
Connectivity Map (CMAP, Connectivity Map, Broad 
Institute) [52],
LINCS 1000 NIH LINCS Program (lincsproject.org) 
[53],
DrugMatrix (norecopa.no) [54],
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Open TG-GATEs (LSDB Archive; biosciencedbc.jp) 
[55],
ArrayExpress (EMBL-EBI) [56], and
Gene Expression Omnibus (GEO; nih.gov) [57, 58].

The qPCR has been used as an efficient screening 
method after narrowing down biomarker genes by com-
prehensive analysis using DNA microarray. Similarly, 
“targeted” RNA-Seq, in which specific PCR primers are 
designed to amplify only selected gene transcripts, can 
be used. In “targeted” RNA-Seq, the unique sequenc-
ing tag allows a large number of samples to be mixed and 
sequenced at the same time, making it a simpler and more 
cost-effective method than qPCR. To increase the effi-
ciency of the analysis, it is recommended to combine genes 
with similar expression levels for “targeted” RNA-Seq [8].

The next newly established technology for RNA-Seq 
is single-cell RNA-Seq (scRNA-Seq). The scRNA-Seq 
pipeline has emerged as a valuable tool for uncovering 
individual cellular functions in thousands to millions of 
cells, an advancement over the bulk RNA-seq method of 
averaging gene expression across all cells in a tissue [59]. 
However, to the best of our knowledge, scRNA-Seq has 
yet to be applied to toxicogenomics, including to the dis-
crimination of GTCs, NGTCs, and NCs.

When discussing the proposed candidate genes that 
can act as markers of GTHCs and NGTHCs in RNA-
Seq, DNA microarray, and qPCR data on samples from 
rodent liver, they are not always consistent among dif-
ferent published papers [5–31, 36–47]. For example, 
JEMS·MMS·Toxicogenomics group proposed 12 candi-
date genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, 
Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate 
GTHCs from NGTHCs and NGTNHCs by PCA from 
analyses of mouse liver [41], rat liver [43], public DNA 
microarray data (OPEN TG-GATEs) [47], RNA-Seq [8], 
and RNA-Seq on FFPE samples [9] upon 4 h to 28 days 
of treatment with a total of 35 chemicals (15 GTHCs, 
9 NGTHCs, and 11 NGTNHCs). Meanwhile, Kossler 
et al. proposed 51 marker candidate genes that could dif-
ferentiate GTHCs from NGTHCs and NHCs (Table  1) 
and 58 marker candidate genes that could differentiate 
NGTHCs from GTHCs and NHCs (Table  2) in mouse 
liver examined by DNA microarray. They examined 
a total of 13 chemicals (3 GTHCs, 6 NGTHCs, and 4 
NHCs) in mouse liver after treatment for 3 and 14 days 
[46]. They proposed 15 genes involved in the DNA 
damage response, four of which (Bax, Ccng1, Ddit4l, 
and Phlda3) overlapped with those in the studies of 
JEMS·MMS·Toxicogenomics group. However, Kossler 
et  al. examined three GTHCs that differed from the 15 
GTHCs examined by JEMS·MMS·Toxicogenomics 
group. Moreover, Park et  al. presented significantly 

deregulated genes in rasH2 mouse liver upon treatment 
with DEN and 2AAF; there were 47 upregulated genes, 
including Aen, Bax, Btg2, Ccng1, Cdkn1a, Ddit4l, Plk2, 
Mdm2, Phlda3, and Tubb4b, which were also proposed 
by JEMS·MMS·Toxicogenomics group, and 11 down-
regulated genes [47]. JEMS·MMS·Toxicogenomics group 
also studied DEN and 2AAF. Furthermore, Jonker et  al. 
reported the discrimination of 2 GTCs, 2NGTCs and 2 
NGTNCs in the liver of both wild-type and DNA repair-
deficient Xpa2/2/p531/2 (Xpa/p53) mice using DNA 
microarray and heatmap [60]. However, their candidate 
genes differed from those in other published papers. 
Finally, Li et  al. examined rat liver upon treatment with 
a GTHC, AFB1, for 5 days and performed analyses using 
RNA-Seq, TempO-Seq, DNA microarray, and qPCR. 
They proposed 11 completely different marker genes in 
other published papers [10]. Given these conflicting find-
ings, it should be useful to reselect or validate genes from 
all available databases to discriminate GTCs, NGTCs, 
and NGTNCs.

In connection with restrictions on animal test-
ing, “OECD Guidelines for the Testing of Chemicals, 
[Repeated Dose 28-Day Oral Toxicity Study in Rodents 
(OECD TG 407)] [Test No. 407: Repeated Dose 28-day 
Oral Toxicity Study in Rodents | READ online (oecd-
ilibrary.org)] is still valid for testing chemical toxicity. 
This assay determines the general toxicity of chemicals 
in rodents after 28  days of oral dosing (e.g., effects on 
the liver, kidneys, heart, and lungs). Despite restrictions 
being placed on animal testing, this test will continue to 
be applied. We can use the animal organs from the test 
collaboratively and use the samples, which would reduce 
the number of experimental animals used.

In toxicogenomic experiments, there are protocol 
issues to be considered, such as the method and number 
of administered doses, dose setting, and timing of obser-
vation. As yet, no consensus has been reached on the 
optimal settings for these variables. Therefore, it would 
be beneficial to adjust the strategy according to each 
study to find the best protocol, but also to adjust set-
tings to match previous studies, such as using a 28-day 
repeated dosing test in rats. Regarding the future direc-
tion of toxicogenomics concerning the 3Rs concept, we 
also propose incorporating not only toxicogenomics but 
also other genotoxicity assays (e.g., micronucleus test, 
error-corrected sequencing, comet assay, DNA adduct 
analysis) into 28-day repeated dosing study in rats to ena-
ble a reduction in the number of animals used by apply-
ing multi-endpoint assays.

Targeted RNA-Seq requires only a few hundred base 
pairs for sequencing, which enables the use of RNA 
from FFPE samples. A large number of FFPE samples 
from pathological examinations in previous studies are 
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available, including those from 2-year rodent bioassays 
for carcinogenicity. The examination of stored FFPE 
samples would enable the establishment of substantial 
expression data with information on toxicological end-
points such as carcinogenicity [61]. The construction of 
a large database with data on a large set of genotoxic car-
cinogens would improve the efficiency and reliability of 
biomarker genes for discriminating such compounds.

Conclusions
There is a growing need to develop alternative in  vivo 
methods to the 2-year rodent bioassay to assess the 
carcinogenicity of environmental chemicals. Toxicog-
enomics, including recent RNA-Seq and previous qPCR 
and DNA microarray, has been studied for its poten-
tial as a short-term in  vivo alternative to long-term 
animal studies. RNA-Seq has identified more DEGs 
and provided a wider quantitative range of expres-
sion level changes than conventional DNA microarrays. 
JEMS·MMS·Toxicogenomics group successfully dis-
criminated GTHCs from NGTHCs and/or NGTNHCs 
in rat and mouse liver by 12 marker genes using targeted 
RNA-Seq, RNA-Seq on FFPE samples, qPCR, and DNA 
microarray with PCA as a statistical approach. The 12 
marker genes were re-validated by public DNA microar-
ray data (OPEN TG-GATEs). EPA studied DEGs induced 
by 4 known GTHCs in rat liver using DNA microarray 
and proposed 7 biomarker genes, four of which (Bax, 
Btg2, Ccng1, and Cdkn1a) overlapped with those of 
JEMS/MMS 12 genes. Candidate genes published using 
RNA-Seq, qPCR, and DNA microarray will be useful for 
the future development of short-term in  vivo studies of 
environmental carcinogens using RNA-Seq. In connec-
tion with the restrictions on animal testing and the 3Rs 
concept, it would be beneficial to adjust settings to match 
a 28-day repeated dosing test in rats rather than seeking 
the best protocol for toxicogenomics.
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Zeb2  Zinc finger E-box binding homeobox 2
Zfp54  Zinc finger protein 54
Zfp472  Zinc finger protein 472
Zfp750  Zinc finger protein 750
Zfp958  Zinc finger protein 958
Zkscan14  Zinc finger with KRAB and SCAN domains 14
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