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Abstract 

Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), 
has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage 
directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory 
system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by 
methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has 
been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation 
in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer 
initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the 
methylation of DNA plays a role in cancer development.
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Graphical Abstract

Introduction
Benzo(a)pyrene (BaP) is the first recognized and most 
prototypical environ mental pollutants and carcinogens 
[6, 12, 63], Bukowska, Mokra et al. [14]. It comprises five 
fused aromatic rings, and derived from organic materi-
als that has not been completely burned, including fos-
sil fuels [73, 74] and timber [17]. Thus, BaP widely exists 
in automobile exhaust [111], deep-fried food [45], coal 
chemical combustion smoke and waste, etc.[68]. BaP can 
be stable in the environment due to its hydrophobicity 
[52] and chemical stability [101], while the collection of 
BaP in aquatic organisms is associated to its lipophilicity 
[2, 30], and it can accumulate along the food chain and 
enter the human body. Therefore, BaP can be detected in 
air (Schreiberová, Vlasáková et al. [123]), soil [108], water 
sources [53] and foods [159].

As a byproduct of the development of science and 
technology, BaP is a great threat to human health. The 
International Agency for Research on Cancer (IARC) of 
the World Health Organization has listed BaP as a class 
I human carcinogen [92, 143], Goedtke, Sprenger et  al. 
[46], and accumulated studies have revealed a close rela-
tionship between BaP and cancers in respiratory system 
[120], digestive system [44], reproductive system [121] 
etc. The toxicity of BaP to cells is mainly causing DNA 
damage [84] and oxidative stress [64, 65] by an increase 
in reactive oxygen species (ROS) production. BaP 
requires metabolic activation before reaction with DNA, 
and its metabolite benzo(a)pyrene-trans-7,8-dihydrodiol-
9,10-epoxide (BPDE) induced genotoxicity by forming 

BPDE-DNA adduct [80, 106], which showing mutagenic 
and carcinogenic potential in cells [85]. Aryl hydrocarbon 
receptor (AHR) is a transcription factor [41], Gargaro, 
Manni et  al. [43], when activated by BaP, AHR translo-
cates to nucleus, and forms a heterodimer with the aro-
matic receptor nuclear transporter (Arnt) [61], which 
binds to the downstream target gene and activates the 
abnormal expression of cytochrome P450. P450 is one 
of the major ROS generators [96], Duan, Chen et al. [34], 
and ROS is a crucial factor of oxidative stress, which can 
induce oxidative DNA damage (Fig. 1) [91], cell apoptosis 
and even canceration [58, 102].

The initiation of cancer shares intimate links with 
genome epigenetic changes [29, 132], Hatano, Ideta 
et  al. [54], in which DNA methylation and demethyla-
tion have been shown to be vital ways to cause carcino-
genesis [47, 110, 155]. DNA methylation is the formation 
of 5-methylcytosine (5mC) by S-Adenosylmethionine 
(SAM) -dependent methyltransferases (DNMTs) (Marti-
sova, Holcakova et al. [93], [149]. Baylin et al. suggested 
that the relationship between carcinogenesis and meth-
ylation was mainly through the following ways: firstly, the 
hypomethylation of the oncogene promoter. Secondly, 
the locally hypermethylation of the tumor suppres-
sor gene promoter, and thirdly, 5mC-containing-DNA 
sequences or direct mutations exposed to ultraviolet 
light or other carcinogens [9]. DNA demethylation can 
either be passive or active [11], which is regulated by ten-
eleven translocation (TET) family enzymes [113]. TET 
proteins belong to α-ketoglutarate- and  Fe2+-dependent 
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dioxygenases, and Tet1, Tet2 and Tet3 involved in this 
family [26]. Tet1 and Tet2 mainly regulates the level of 
5-hydroxymethylcytosine (5hmC) in the promoter region 
of primordial germ cell (PGCs) genes or 5hmC inside 
PGCs gene, while Tet3-mediates paternal active DNA 
demethylation [7, 64, 65, 89, 94, 134, 161]. Active DNA 
demethylation occurs under the catalysis by TET pro-
teins, which sequentially oxidize 5-methylcytosine (5mC) 
to 5hmC, then to 5-formylcytosine (5fC) and 5-carboxyl-
cytosine (5caC) [38, 104, 126, 147]. In vivo experiments 
demonstrated that when the deletion of thymidine DNA 
glycosylase (TDG), which was pivotal in DNA demeth-
ylation, adult mice would develop delayed hepatocellular 
carcinoma (HCC) and hepatoblastoma (HB) (Onabote, 
Hassan et  al. [103]). Thus, when DNA methylation and 
demethylation are abnormal, cells are likely to become 
cancerous.

It is general for cells to undergo epigenetic alterations 
after toxic treatment, but these changes include differ-
ent trends and mechanisms. For example, NaAsO2 treat-
ment of human bronchial epithelial (HBE) cells inhibits 
TET-mediated DNA demethylation and induces pro-
moter hypermethylation of 8-oxoguanine DNA glyco-
sylase (OGG1) and glutathione stransferase Pi 1(GSTP1) 
[139]. Hoang et  al. found that pesticides can also cause 
DNA methylation changes [60]. Researchers have found 
that BaP changed genomic methylation levels in cells. 
In recent years, it has become a hot spot to reveal the 
carcinogenicity of BaP by changing genomic DNA 

methylation. Then how BaP as a carcinogen causes can-
cer through the regulation of epigenetics is worthy of 
consideration. Exploring the effects and mechanisms of 
BaP on genomic methylation will help understand BaP-
induced carcinogenic mechanism, evaluate the risk of 
environmental pollutants, and provide an important the-
oretical basis for prevention of BaP from human health. 
In this review, we discuss the effects of BaP on DNA 
methylation and its correlation with carcinogenesis and 
provide future directions for researchers to reveal the 
mechanisms in these biological processes.

DNA methylation in the presence of benzo(a)
pyrene
Benzo(a)pyrene and DNA methyltransferases
DNA methylation occurs when a methyl group is cova-
lently attached to the 5th carbon position of CpG 
dinucleotides to form a product 5mC by DNA methyl-
transferase (DNMTs) (Martisova, Holcakova et al. [93]). 
DNMTs are mainly constituted of three structures: a 
C-terminal catalytic domain, an N-terminal regulatory 
domain and the central junction region [135]. Within the 
family of DNMTs, DNMT1, DNMT3a, and DNMT3b 
have DNA methyltransferase activities [20, 112]. DNMT1 
sustains DNA methylation (Svedružić Ž [128]), DNMT3a 
and DNMT3b are responsible for de novo DNA meth-
ylation [76], Veiga, Lawrence et  al. [136]). BaP induces 
DNA methylation through dysregulating the expres-
sion of DNA methyltransferases. It was reported that, 

Fig. 1 Oxidative stress of benzo(a)pyrene
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the expression of DNMT3a was down-regulated when 
exposure of mouse embryonic fibroblasts to BaP for 
2  weeks, while the expression of DNMT1 up-regulated 
after 4  weeks of exposure, and DNA methylation lev-
els was elevated [152]. Moreover, BaP metabolite BPDE 
could induce DNMT3a binding to the promoters of 
related tumor suppressor genes, which resulted in the 
aberrant methylation of retinoic acid receptor-β2 (RAR-
β2) in human esophageal cancer cells, and BPDE reduced 
DNMT3b expression [153].

However, in rainbow salmon liver, Bap was shown 
to inhibit the activity of DNA methyltransferase and 
decrease DNMT3a expression, which leading to DNA 
methylation globally reduce [77]. Moreover, compared 
with non-smokers, DNMT1 expression was appar-
ently higher among smokers, and the level of meth-
ylated metabolites was also increased, which was 
associated with BaP in cigarette [71]. In human hepatic 
L02 cells, BaP at 0.1, 1 and 10 nmol induced the expres-
sion of DNMT1, DNMT3a and DNMT3b, resulting in 
glutathione-S-transferase-pi (GSTP) promoter region 
hypermethylation [131]. The above results demon-
strated that the level of DNMTs could be modulated by 
BaP, which was one of the important ways to cause DNA 
abnormal methylation.

Benzo(a)pyrene and gene methylation
BaP induces DNA methylation by targeting DNMTs, 
on the other hand, BaP can directly reduce the level of 
genome-wide methylation, and alter the methylation lev-
els of specific genes, including tumor suppressor genes 
and proto-oncogenes, resulting in activation of proto-
oncogenes or inactivation of tumor suppressor genes, 
and tumorigenesis [9].

Benzo(a)pyrene and genome‑wide DNA methylation
As an epigenetic modifier, Bukowska et  al. proposed 
that BaP reduces genomic DNA methylation by binding 
to DNA [15] the mechanism may be as follows: 1. BaP 
enters the human body through a series of reactions to 
form BPDE, which binds to DNA to inhibit the expres-
sion of DNMTs, thereby reducing the process of 5mC 
production and eventually causing a decrease in genome-
wide methylation levels [160, 15]; 2. ROS generated by 
BaP can lead to oxidative DNA damage, which further 
affects the interaction between DNMTs and methyl CpG-
binding proteins, thereby inhibiting the transcription of 
DNMTs, reducing the role of DNMTs in methylation, 
and ultimately reducing genome-wide methylation levels 
[57, 160], 3. BaP induces the conversion of SAM to SAH 
by increasing Glycine N-methyltransferase (GNMT) 
activity, reduces the covalent binding of SAM to a 
methyl group mediated by DNMTs to form 5mC, further 

reduces the production of 5mC, and causes a reduction 
in genome-wide methylation levels [37]. It was found that 
different concentrations of BaP (0.24, 2.4 and 24  μg/L) 
reduced the global levels of 5mC in Zebrafish embry-
onic cells, and BaP at 24 μg/L had the strongest activity 
[37]. In 16HBE, BaP was found significantly diminish-
ing DNA methylation level throughout the genome in a 
time- and dose- dependent manner [62]. Similarly, when 
BaP was administrated at a dose of 600 mg/kg to the male 
ICR mice, the genome-wide DNA methylation level in 
blood and liver followed a downward trend along with 
the treatment time increasing [160]. Immunofluores-
cence staining results showed that the DNA methylation 
level of 16HBE cell treated with gradient concentra-
tion of BaP (2.5, 5, 10, 20 and 40 mmol/L) decreased by 
3.43%, 9.27%, 23.76%, 32.55% and 43.15%, respectively 
[148], indicating that BaP inhibited genome-wide DNA 
methylation. Moreover, compared with normal tis-
sue, genome-wide DNA in tumor tissue was found in a 
markly hypomethylated status (Ili, Buchegger et al. [66]). 
These results provide a theoretical foundation for illumi-
nating the mechanism of carcinogenesis induced by BaP, 
which decreases the level of genome-wide DNA meth-
ylation, disturbs cell growth and apoptosis, and enables 
canceration.

Benzo(a)pyrene and specific gene methylation
Five to ten gene promoters hypermethylation when 
human immortalized bronchial epithelial cell treated 
with BPDE, including E-cadherin and Protocadherin-10 
[28], which was related to breast cancer invasion [49]. 
Corrales et  al. found that when Zebrafish embryos 
(during 96hpf ) exposed to BaP, significant changes in 
methylation levels were observed in the promoters of 
10 genes, including cancer-associated genes, meta-
bolic genes, developmental and reproductive genes. 
Among them, six genes were hypermethylated includ-
ing cancer-associated genes c-fos and MutL Homolog 1 
(MLH1) [24], and four genes were hypomethylated. The 
results were consistent with the previous studies that 
cancer tissues expressed high level of hypermethylation 
in c-fos gene and MLH1 promoter [21, 86]. C57BL mice 
were treated with BaP at different concentrations (1.0, 
2.5, 6.25 mg/kg), and DNA methylation in the promoter 
region of the N-methyl-d-aspartate receptor subunit 2B 
(NR2B) gene was up-regulated, and NR2B expression in 
prefrontal cortex and hippocampal part decreased by 
qPCR analysis, resulting in the diminishment of NR2B 
expression and abnormal behavior among mice [158]. 
By observing the different stages of 16HBE transfor-
mation induced by BaP, there were some correlations 
between the hypermethylation of the FMS-like tyrosine 
kinase-1 (FLT1) promoter and carcinogenesis of PAHs 
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[56]. Liu et  al. treated 16HBE with different concen-
trations of BaP (1, 2, 5  mmol/L) for 24  h, and related 
genes were measured by methylation-specific PCR. 
They found that GSTP1promoter methylation level was 
in negative correlation with BaP concentrations; BaP 
prohibited the methylation in the promoter of CYP1A1, 
which was the major members of the cytochromeP450 
(CYP450) family [88]. BaP (5  µg/L) not only induced 
hypermethylation in the promoter region of tumor 
suppressor gene APC, but also induced demethyla-
tion in the proto-oncogene promoters of cyclooxyge-
nase-2 (COX-2) and mutS homolog 2(MSH2) in normal 
peripheral blood mononuclear cells (PBMC) [156].

The above analyses show that BaP may induce a 
decrease in DNA methylation level accompanied by 
abnormal methylation patterns of some certain genes 
(Table 1), and the hypermethylation of tumor suppres-
sor genes by Bap contributes to the occurrence and 
development of cancer.

Carcinogenesis of benzo(a)pyrene by DNA methylation
Alteration of DNA methylation is the most representa-
tive epigenetic feature in cancer progression [47, 48, 72]. 
Silencing of tumor suppressor gene expression is caused 
by hypermethylation in gene promoter region, and 
genome-wide hypomethylation can lead to genome insta-
bility and proto-oncogene activation [146], eventually 
inducing the development of cancer [156]. The mecha-
nisms of BaP can be summarized in two aspects: induc-
ing hypomethylation of proto-oncogenes and activating 
them; and inhibiting tumor suppressor gene expression 
by hypermethylating them, both of which promote can-
cer initiation (Fig. 2).

Association of benzo(a)pyrene methylation levels 
with multiple cancers
BaP as a Class I carcinogen, can cause a variety of cancers 
[44, 120]. When BaP enters the human body, it undergoes 
a series of chemical reactions, and affects DNA methyla-
tion levels, which contributes to carcinogenesis of human 

Table 1 Methylation changes induced by benzo(a)pyrene

Changes in methylation Sample type Treatment dose / time Correlation 
between dose 
/ time and 
methylation

Reference

Changes in DNMTs DNMT3a↓ Mouse embryonic fibroblasts 0.25 μmol
2 weeks, 4 weeks

Negative correlation [152]

DNMT1↑ positive correlation

DNMT1↑ Smokers Not stated Not stated [71]

Global methylation Whole genome↑ Mouse embryonic fibroblasts 0.25 μmol
2 weeks, 4 weeks

positive correlation [152]

Whole liver genome↓ Rainbow salmon liver (1 ng/L),
(10 ng/L)
24 h and 14 days

negatively cor-
related with time 
and dose

[77]

Whole genome↓ Zebrafish embryos 0.24, 2.4, 24 μg/L Negative correlation [37]

16HBE 10, 20,
40 μmol
24 h, 72 h

Negative correlation [62]

ICR mice 600 mg/kg Negative correlation [160]

Hypermethylation of specific 
genes

RAR-β2↑ Human esophageal cancer cells 24 h Not stated [153]

GSTP↑ Human hepatic L02 cells 0.1, 1,
10 nmol

Positive correlation [131]

E-cadherin↑ Human Immortalized bronchial 
epithelial cells

0.05, 0.1, 0.25 μmol/L Positive correlation [28]

Protocadherin-10↑ Positive correlation

c-fos↑ Zebrafish embryos 50 μg/L Not stated [24]

MLH1↑ Not stated

NR2B↑ C57BL mice 1.0, 2.5, 6.25 mg/kg Positive correlation [158]

FLT1↑ 16HBE 20 mmol Not stated [56]

APC↑ Human HCT116 5 μg/L Not stated [156]

Hypomethylation of specific 
genes

GSTP1↓ 16HBE 1, 2, 5
mmol/L

Negative correlation [88]

CYP1A1↓ Negative correlation

COX-2↓ Human PBMC 5 μg/L Not stated [156]

MSH2↓ Not stated
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respiratory system, digestive system and reproductive 
system, and eventually results in the occurrence of a vari-
ety of cancers (Fig. 3, Table 2).

Respiratory system cancer
Lung Cancer is one of the most common malignant 
tumors worldwide, with a highest mortality rate and 
morbidity rate [83, 133]. The occurrence of lung cancer is 

closely related to smoking [31, 67] and air pollution [122, 
150], which are rich in BaP. Daily BaP concentrations 
were collected from 8 traffic stations in Barcelona during 
the severely cold period from 2013 to 2015. on the basis of 
Lung Cancer Risk (LCR) equation for BaP inhalation, the 
LCR values of the 8 stations exceeded the  10−6 threshold. 
It is concluded that chronic exposure to BaP increased 
the incidence of lung cancer [32]. Comparative study was 

Fig. 2 The mechanism of carcinogenesis of benzo(a)pyrene

Fig. 3 Benzo(a)pyrene alters gene methylation levels leading to cancer
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conducted on lung cancer cases, and the results showed 
that the plasma BPDE-Alb adduct per SD (26.85  ng/
mL) increased, the risk of lung cancer expanded by 46%. 
Meta-analysis determined that 15 CpG was interrelated 
with the plasma BPDE-Alb adducts, including Ubiquitin-
conjugating enzyme E2 O (UBE2O), Sterile alpha motif 
domain containing protein 4A (SAMD4A), Acyl-CoA 
binding domain-containing 6 (ACBD6), Diacylglycerol 
kinase 2 (DGK2) and Schlafen 13 (SLFN13), which medi-
ated the association between BaP exposure and 30%-60% 
lung cancer risk. These results highlighted the change of 
DNA methylation by BaP might be a contributing fac-
tor for lung cancer [95]. Some scholars believed that that 
BPDE, a metabolite of BaP, affected DNA methylation by 
binding to CpG, which was one of potential mechanisms 
of lung cancer induced by BaP [15]. The above studies 
indicated that BaP induced lung carcinogenesis by alter-
ing methylation of genes.

Long interspersed nucleotide element 1 (LINE-1) is the 
biggest family of long interspersed nucleotide elements, 
and some studies have shown that LINE-1 is an indica-
tor of methylation levels in the genome [119]. Numerous 
tumors have been reported to exhibit the hypometh-
ylation of LINE-1 [105]. The methylation levels of 
LINE-1 and O6-methylguanine-DNA methyltransferase 

(MGMT) in PAHs exposure group and control group 
were detected by pyrosequencing (PSQ) technology, and 
the results demonstrated that PAHs induced LINE-1 
hypomethylation, and genome-wide hypomethylation 
might promote genomic instability, eventually contrib-
uted tumor progression; MGMT promoter hypometh-
ylation resulted in the abnormal expression in gene 
level, which reduced its ability to repair damaged genes, 
further exacerbating the stability of the chromosomes. 
According to these findings, PAH-induced carcinogen-
esis seemed to be mediated by specific methylation in the 
CpG island region of the MGMT [33]. These results were 
consistent with the situation of LINE-1 hypomethyla-
tion [107] and MGMT promoter hypomethylation [59] 
in lung cancer cells. A comparative study was utilized to 
detect DNA methylation in 16HBE cells treated with BaP 
and in lung cancer Xuanwei lung cancer (XWLC) cells 
without any treatment. The results showed that low levels 
of 5mC and high levels of 5-hmC were found in XWLC 
cells, and lower global 5-mC level and higher 5-hmC level 
were found in BaP-treated 16HBE cells, which suggested 
that BaP treatment led to cell demethylation and BaP-
induced alterations in DNA methylation might be a con-
tributing factor to aberrant DNA methylation in XWLC. 
Moreover, Bisulfite sequencing PCR (BSP) analyzed the 

Table 2 Carcinogenic epigenetic changes of benzo(a)pyrene

Changes in methylation Objects exposed to BaP Reference

Genome-wide hypomethylation 16HBE [62, 148]

zebrafish embryo [37],

ICR mouse [160]

colorectal cancer tumor tissue [66]

Hypermethylation of specific genes APC human HCT116 [156]

c-fos, MLH1 zebrafish embryo [24]

FLT1 16HBE [56]

DKK2, EN1 16HBE [69]

TRIM36 HBE [55]

P14, P15, P16 coke oven workers [157]

GSTP lung Cancer Patients [131]

BCL6B mice [16]

RAR-β2 human esophageal cancer cells [127, 153]

RARβ, APC Breast cancer patients [144]

HIN1,
CDH1

breast cancer patients [145]

eRα mice [117]

Hypomethylation of specific genes GSTP1,
CYP1A1

16HBE [88]

LINE-1, MGMT workers exposed to PAHs [33]

F2RL3,
AHRR

creosote-exposed workers, chimney sweeps [3]

TSC2 human MCF-7, human HCC1806 [115]

DAPK-1 breast cancer cells [145]
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state of methylation of 25 CpG dinucleotides located in 
the promoter region of Dickkopf-2 (DKK2) and 20 CpG 
dinucleotides in the Engrailed 1 (EN1) promoter region 
after 16HBE cell treated with BaP, and the results showed 
that hypermethylation occurred at the,  1st,  2ed,  5th and 
 6th CpG dinucleotides in DKK2 promoter region and the 
 1st,  8th and  14th CpG dinucleotides in the EN1 promoter 
element, which were similar to those observed in XWLC 
cells [69]. Based on these findings, a mechanism on how 
BaP-induced DNA methylation changes resulting in lung 
cancer was explored. BaP induced significant hypermeth-
ylation of the DKK2 and EN1 gene promoter elements, 
and then inhibited DKK2 and EN1 gene expression, 
which promoted lung cancer cell proliferation and cancer 
development.

In 2017, He et  al. observed in HBE cells that follow-
ing exposure to BaP, a tumor suppressor gene, tripartite 
motif containing 36 (TRIM36) were hypermethylated, 
which may be involved in BaP-induced cell carcinogen-
esis. To prove this conjecture, pyrosequencing tech-
nologies were applied to detect the degree of TRIM36 
methylation in non-small cell lung cancer (NSCLC) 
patients. The results showed that TRIM36 hypermethyla-
tion was found in 90.0% (27/30) of the NSCLC, indicat-
ing that BaP induced hypermethylation of TRIM36, then 
promoted lung carcinogenesis [55]. In 2019, the same 
study group found that hypermethylation of FLT1 pro-
moter, a tumor suppressor gene, probably involved in the 
carcinogenic process of PAHs [56]. Both studies demon-
strated that BaP induced part of tumor suppressor genes 
inactivation through hypermethylation, which was asso-
ciated with the development and progression of cancer.

Studies have proven that hypermethylation in the 
promoter region of P14 (ARK), P16 (INK4a) gene con-
tributed to the occurrence of lung cancer, which were 
considered to be an early event in lung carcinogenesis 
[130, 151]. Coke oven workers are at high risk of develop-
ing lung cancer, because of the high concentration of BaP 
in the working environment [25, 109]. By comparing the 
concentration of BaP in the air of coke oven workshop 
with control workshop, Zhang et al. found that the aver-
age concentration of BaP at the coke oven top (1286.5 ng/
m3) was 147 times higher than the average concentration 
(8.6  ng/m3) in control workshop, which suggested that 
BaP played a major role in lung cancer development in 
coke-oven workers. To explore the mechanism of car-
cinogenesis in BaP, the author chose 74 coke-oven work-
ers long-time exposing to BaP as experimental  group, 
and 47 plumbers who had less opportunity exposing to 
BaP as control group, and genomic DNA methylation 
from workers’ PBMC were measured. The results showed 
that CpG island in the promoter regions of tumor sup-
pressor genes P14 (Ark), P15 (INK4b) and P16 (INK4a) 

were significantly higher in experimental group [157]. It 
is well known that silencing of tumor-suppressor genes 
is associated with the promoter-region hypermethyla-
tion, which can induce cell proliferation and over-growth, 
and ultimately lead to tumorigenesis. Thus, it may be the 
main reason for coke-oven workers at high prevalence 
rate of lung cancer.

DNA hypomethylation in factor II receptor-like 
3 (F2RL3) and aryl hydrocarbon receptor repressor 
(AHRR) gene is smoking-related biomarker in blood, 
which closely correlated with lung cancer incidence and 
mortality. Alhamdow et al. [3] compared the DNA meth-
ylation of lung cancer-related genes F2RL3 and AHRR 
between the workers occupationally exposed to PAHs 
and the control group. The CpG methylation levels of 
AHRR and F2RL3 in the exposed group were signifi-
cantly lower than those in the control group, which was 
consistent with the above expression.

Digestive system cancer
Gastric cancer (GC) is one of the most commonly malig-
nant cancers [19, 82]. The common causes of GC are 
H. pylori infection [23], chronic atrophic gastritis [78], 
unhealthy diets [129] and inheritance [22] et al. China has 
a high incidence rate of liver cancer [36], and viral infec-
tion [79], chronic alcoholism [50], eating moldy and dete-
riorate foods [116] can lead to hepatic cancer. Moreover, 
BaP can also induce gastric and hepatic cancer [44, 140]. 
It has been shown that the promoter region in GSTP 
gene (a tumor suppressor gene) was significantly hyper-
methylated in HCC patients, and BPDE-Alb adducts 
were remarkably correlated with GSTP methylation level. 
In addition, there was a higher risk of developing HCC in 
those individuals with higher levels of BPDE-Alb adducts 
and GSTP hypermethylation. Tian et al. further evaluated 
the association between epigenetic alterations caused by 
BaP and the risk factors in HCC. The results showed that 
BaP induced the hypermethylation of promoter regions 
in the detoxification gene GSTP, leading to a loss of pro-
tective function owing to gene silencing, which triggered 
the accumulation of poisons in liver, increased oxidative 
stress, DNA damage and hepatocarcinogenesis [131]. 
B-cell CLL/lymphoma 6 member B (BCL6B) is a tumor 
suppressor. Once the promoter regions of BCL6B is 
excessively methylated, gene expression is suppressed or 
silenced, leading to colonic carcinoma [51], and gastric 
carcinogenesis [16, 87]. To explore how BCL6B functions 
as a tumor suppressor gene during gastric carcinogenesis, 
Cai et  al. used Bcl6b-deficient mice and wild type mice 
to investigate Bcl6b’s role in the development of gastritis 
and GC caused by BaP. The results showed in wild mice 
that during gastric carcinogenesis induced by BaP, Bcl6b 
expression was gradually decreased by its promoter 
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CpG islands hypermethylation, alongside an increased 
in inflammatory response. In addition, in BCL6B gene 
knockout mice, BaP induced inflammatory response 
and promoted gastric carcinogenesis [16]. Thus, BaP 
regulated the expression and function of BCL6B through 
promoter hypermethylation, then triggered an elevated 
inflammatory response which promoted the occurrence 
and development of tumors.

At present, absent expression of Retinoic Acid 
Receptor-β2 (RAR-β2) and hypermethylation in its pro-
moter region have been used as diagnostic markers of 
oncogenesis [98]. RAR-β2 promoter hypermethylation 
is an early event during esophageal cancer progression 
[142]. It was found that RAR-β2 promoter hypermethyla-
tion was induced by BPDE, and then its expression was 
decreased by recruiting DNMT3A in combination with 
RAR-β2, which promoted the occurrence and develop-
ment of esophageal cancer [153]. The inhibition of RAR-
β2 expression by BPDE induced COX-2 highly expression 
[127], and overexpression of COX-2 was linked to esoph-
ageal cancer [4, 18]. There are some similarities between 
the mechanisms on lung cancer and digestive system 
cancer induced by BaP. BaP modulates aberrant DNA 
methylation or promoter hypermethylation in various 
tumor suppressor genes, which alters gene expression 
and contributes carcinogenesis.

Reproductive system cancer
breast cancer is a common malignancy in women (Sethi, 
Shanmugam et  al. [125], Velloso, Trombetta-Lima et  al. 
[137]). Its etiology is related to genetic factors [97], endo-
crine hormones [1], and exposure to environmental pol-
lutants such as BaP [5]. There is evidence that aberrant 
methylation of genomic DNA contributes to breast can-
cer development [39], Lubecka, Kaufman-Szymczyk et al. 
[90], [35]. Therefore, BaP inducing breast cancer through 
abnormal DNA methylation is worth investigating.

In 2004, Sadikovic et al. treated MCF-7 and MDA-MB 
231 cell lines by 5 mol/L of BaP, and found that the level 
of global genome methylation was reduced by 12% in 
BaP-treated cells [114]. Previous studies have shown that 
genome-wide hypomethylation was observed in breast 
cancer [100], which was consistent with Sadikovic’s 
study. In 2006, the authors tested the growth dynam-
ics of four breast cancer cell lines exposed to BaP, and 
found that BaP exposure reduced cell proliferation via 
accumulation of cell cycle at S and G2/M phases, and 
induced p53-dependent cellular apoptosis. Amplification 
of inter-methylated sites (AIMS) analysis showed that 
BaP induced the hypomethylation of tumor suppressor 
gene subunit 2 (TSC2) in human MCF-7 and HCC1806 
cells [115], which also could be detected in breast can-
cer [70]. All the results indicated that p53-specific cell 

cycle interruption and DNA methylation disruption 
were resulted from BaP exposure, and short interspersed 
nucleotide elements (SINEs) acted as specific targets 
on the association of Bap exposure with DNA methyla-
tion, which contributed to genomic instability and breast 
carcinogenesis.

It is suggested that exposure to environmental contam-
inants correlated with DNA methylation and breast can-
cer progression. A study on the relationship among DNA 
methylation, PAH-DNA adducts, and breast cancer was 
carried out in 2015 by White et al. Thirteen genes were 
identified associated with breast cancer occurrence, and 
that the tumor suppressor gene retinoic acid receptor 
beta (RARβ) and the adenomatous polyposis coli (APC) 
promoter specific methylation interacted with PAH-
DNA adducts, which affected the hormone receptor 
expression, and increased the risk for developing breast 
cancer [144]. It is more likely to express the hypermethyl-
ation of RARβ and APC in the promoter regions in breast 
cancer tissue in comparison to normal breast tissue [81].

The changes of promoter methylation in death-asso-
ciated protein kinase (DAPK) [27], harpin-induced 
1(HIN1) [99]and Cadherin 1 (CDH1) [138] genes can be 
acted as biomarkers for carcinogenesis. In 2016, White 
et  al. discussed methylation in the promoter region 
of cancer-related genes and global methylation in the 
peripheral blood of breast cancer patients with long-time 
exposing to PAHs. They found that the expression level 
of the tumor suppressors HIN1 and CDH1 were ele-
vated, and the methylation level of death-associated pro-
tein kinase 1 (DAPK-1), a breast tumorigenic gene, was 
decreased. Moreover, an increased frequency of chromo-
somal mutations and instability were observed in periph-
eral blood with LINE-1 hypomethylation [145]. The 
results indicated that air pollutants such PAHs induced 
mammary tumor formation by altering the methylation 
of oncogenes [118]. In 2021, Sahay proved that prenatal 
exposure to PAHs induced the hypermethylation of CpG-
2012 and CpG-2138 in estrogen receptors α (ERα) gene 
promoter region, reducing the expression of eRα at gene 
and protein levels in mouse mammary gland. Moreover, 
PAHs could inhibit the expression of tumor suppressor 
gene Brca, and eventually induced mammary carcinogen-
esis [117]. As the most representative carcinogen in PAHs 
[8, 42, 124], BaP contributed to breast cancer occurrence 
by changing tumor suppressor genes methylation.

Discussion
Overall, BaP as the product of combustion of organic 
matter including fossil fuels, can pollute the environ-
ment. Generally, BaP can be found in soil [154], air [75] 
and water sources [141].Because of its chemical proper-
ties [2, 52, 101], BaP can enter human body and cause the 
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incidence of disease in human. As a common toxicant, 
BaP triggers cell damage and cancerization by form-
ing DNA-adduct, oxidative stress, or in the epigenetic 
aspect. In this review, the changes of cellular genomic 
methylation levels modulated by BaP were summarized. 
It is commonly believed that BaP reduced genome-wide 
methylation levels. However, Yauk et  al. [152] study 
found that BaP induced genome-wide hypermethyla-
tion by cytosine extension assay in 2008, which might be 
related to the insufficient techniques. Cytosine extension 
assay is mainly used for testing the overall level of meth-
ylation of CpG, CpHpG, CNpG and asymmetric sites in 
plant tissues [10, 13], but the research objects of Yauk are 
animal cells, which may contribute to the sharp contrast 
results.

BaP as a PAHs carcinogen, enters human body through 
diet, cigarette smoke and gasoline exhaust, and pro-
motes carcinogenesis in human organs and tissues. In 
this review, mechanisms of BaP-induced carcinogenicity 
were discussed at the epigenetic level. GSTP is a member 
of the tumor suppressor gene family, the studies of Tian 
et  al. and Liu et  al. gained different results. Tian et  al. 
found that BaP induced hypermethylation of GSTP, but 
Liu et  al. showed that BaP caused hypomethylation of 
GSTP1. The differences on the dosage of BaP and expo-
sure time might contribute to these different results. 
The epigenetic toxicity of BaP was not limited to meth-
ylation and demethylation, studies have shown that BaP 
promoted histone acetylation and deacetylation [15, 40], 
which could in turn lead to abnormal chromatin struc-
ture and aberrant gene expression. The different results 
from Tian and Liu could be caused via other epigenetic 
mechanisms. It is still not well-known that BaP induc-
ing abnormal DNA methylation associated with diges-
tive system cancer and reproductive system cancer, but 
there is certain correlation between BaP exposure and 
tumor suppressor gene methylation in these two cancers. 
The epigenetic changes of genes induced by BaP and the 
mechanisms of carcinogenesis have not been fully eluci-
dated, and needed a deeper understanding.

BaP is a carcinogen and can cause epigenetic changes 
such as DNA methylation and histone acetylation [15], 
in addition, BaP can affect DNA methylation and dem-
ethylation, the most important part of epigenetics, by 
influencing DNMTs and thus DNA methylation [77, 
152]. Based on the above, it is known that DNMTs 
with DNA methyltransferase activity mainly include 
DNMT1, DNMT3a and DNMT3b, and BaP further 
affects genome-wide or specific gene methylation lev-
els by increasing DNMT1 expression or decreasing 
DNMT3a expression [71, 152]. However, the mechanism 
of how BaP affects gene methylation changes by alter-
ing DNMTs is still unclear, and the enzymes involved in 

the methylation and demethylation process include, in 
addition to DNMTs, the TET protein family, which can 
mediate the DNA demethylation process [147]. Whether 
BaP causes DNA methylation changes with the involve-
ment of TET proteins is less reported in the relevant lit-
erature. Therefore, it is important to further explore the 
mechanism of BaP-induced genome-wide methylation 
level reduction, proto-oncogene hypermethylation and 
oncogene hypomethylation, to discover the cause of can-
cer at the molecular level, to solve this puzzle by scien-
tific means, and to provide treatment options for patients 
who develop cancer due to BaP exposure, and to make a 
significant contribution to human health. Therefore, it is 
urgent to explore the mechanism of how BaP affects gene 
methylation changes by affecting DNMTs.

Nowadays, with the development and progress of 
industrialization, air pollution caused by atmosphere BaP 
has become a problem and demands prompt solution. 
Cancer caused by BaP has also become one of the threat-
ening factors for human health. Governments should not 
only reduce the emission of BaP to the atmosphere, but 
also demand further study the mechanisms on the car-
cinogenesis by epigenetic modification. Folic acid plays 
an extremely important role in human health. In addition 
to effectively preventing diseases such as neonatal neu-
ral tube defects and megaloblastic anemia, folic acid can 
provide methyl donors to participate in the transfer of 
one carbon unit. DNA methylation is a process in which 
DNMT catalyzes the covalent binding of SAM with a 
methyl to form 5mC. According to the above, we know 
that BaP can reduce the level of methylation of the whole 
genome, and then cause cancer, so whether folic acid, as 
a methyl donor, can further promote the occurrence of 
DNA methylation, effectively alleviate the decrease of 
the level of methylation of the whole genome, and then 
reduce the incidence of cancer is worthy of further explo-
ration in the future. Whether 5-azacytidine (5-Aza), as an 
inhibitor of DNA methyltransferase, can inhibit cancer 
caused by the activation of BaP-induced hypomethyla-
tion of proto-oncogenes has not been reported, which is 
also the direction that scientists will study in the future. 
Finding suitable drugs to act on specific targets to reduce 
the incidence of cancer caused by exposure to environ-
mental poisons, is the significance of scientific existence, 
but also the direction of researchers’ efforts. In order to 
provide new insights on reducing or even eradicating the 
harm of BaP to public health, better maintenance of gen-
eral public health should be devoted to the development 
of prevention.
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