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Abstract

Arsenic toxicity in humans manifests several outcomes in humans, which include arsenic-induced genomic
instability, DNA damage, impaired DNA repair, carcinogenesis, dermatological lesions and other health related
problems. Of the 137 million individuals affected, nearly 26 million individuals are in the state of West Bengal, India.
Studies have identified dermatological lesions like keratosis, basal cell carcinoma, Bowen’s diseases, squamous cell
carcinoma, etc., as key indicators of aggressive arsenic toxicity in humans. Although a large number of individuals
are exposed to arsenic but only about 15 to 20 % individuals showed arsenic induced skin lesions. This clearly
indicates that genetic susceptibility plays an important role in arsenic susceptibility. Analyses of genetic susceptibility
have been carried out to study the prevalence of single nucleotide polymorphisms (SNPs) in number of genes as they
might be involved arsenic metabolism and detoxification. It has been observed that a number SNPs in these genes
were significantly associated with arsenic induced skin lesions and other health effects. In the present review we try to
coalesce the different observations and associations of SNPs with arsenic-induced toxicity, with special emphasis on
the study population from West Bengal. We have adopted certain candidate gene approaches to evaluate the
association of arsenic-induced toxic outcomes like skin lesions, conjunctival irritations, DNA damage, epimutagenesis,
cancer, etc. This review shall be helpful in understanding the importance of genetic make-up of an individual towards
evaluating the xenotoxic outcomes, like those in case of arsenic exposure.
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Introduction
A global concern, a potent carcinogen and toxic upon
chronic exposure, arsenic-induced toxicity in humans is
multi-pronged; having a varied spectrum of patho-
physiological outcomes. Nearly 137 million individuals
are affected by arsenic in nearly 70 nations all over the
world that includes India, Bangladesh, Taiwan, Japan,
Chile and parts of China and USA [1, 2]. Apart from
geogenic outcomes [3]; industrial and commercial activ-
ities have also lead to spread of arsenic like those of “the
Toruku Mine incidence” and “the Nakajo-Machi inci-
dence” in Japan in the early twentieth century [4]. Some
of the major toxic outcomes of arsenic in humans in-
clude oxidative DNA damage, dermatological lesions in
form of keratosis, peripheral neuropathy, gastro-
intestinal inflammation and cancers of various types like
skin, lungs, bladder, liver, etc. [5–9].

Several mechanisms of arsenic-induced toxicity have
been proposed and researched all over the world. Of these,
enhanced toxicity due to reactive oxygen species (ROS)
have been evaluated by several studies which was associated
with a plethora of toxic outcomes like arsenic-induced cyto-
genetic damage, inflammation and carcinogenesis [10–12].
This aggressively oxidizes several cellular components and
has been well characterized upon arsenic exposure like oxi-
dative DNA damage [8, 13]. Among the most recent con-
cepts of research, arsenic-induced epigenetic alterations
have also been associated with several molecular outcomes
of arsenic toxicity. Arsenic biotransformation and metabol-
ism within the cells involves a cascade of enzymes that
converts inorganic arsenic to it’s methylated species, using
S-Adenosyl Methionine (SAM) as a substrate. This depelete
indigenous SAM pool within the cells leading to arsenic-
induced global DNA hypomethylation, leading to carcino-
genic outcomes by aberrant gene expressions within the
cell [14]. It was reported that Myc. overexpression was as-
sociated upon arsenic-induced malignant transformation in
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nude mice [15]. MYC, has a strong association with hepatic
and pulmonary cancer with relevant studies showing asso-
ciation with chronic arsenic exposure with liver cancer and
lung cancers [16–18]. This may be mediated by arsenic-
induced epigenetic alterations of Myc. expression. Also,
Myc has the ability to recruit TIP60 (a histone acetyl trans-
ferase; HAT) to the chromatin [19]. HAT category of
enzymes are important regulators of histone acetylation; re-
sponsible for “opening up” of the nucleosomes and increase
the accessibility of the transcription factors. This facilitates
the transcription, along with DNA hypomethylation. This
“opening up” may also enhance accessibility of ROS; lead-
ing to an increased degree of oxidative DNA damage. A
probable mechanism is elaborated in Fig. 1.
Genetic susceptibility has been one of main proponent of

arsenic-induced toxicity. Several population surveys all over
the world have associated single nucleotide polymorphism
(SNP) with arsenic-induced carcinogenesis. Dermatological
lesions in form of raindrop hypo-pigmentation, palmer and
plantar keratosis, Bowen’s disease as well as squamous cell

carcinoma (SCC) and basal cell carcinoma (BCC) have
been considered as hallmarks of arsenic-induced toxicity or
arsenicosis [20–22]. Thus, several epidemiological studies
have evaluated the association between the dermatological
lesions and cancer upon chronic arsenic exposure all over
the world. SNP analysis of 594 arsenic-induced dermato-
logical cases found a significant association between arsenic
metabolic pathway genes with risk of premalignant skin le-
sions [23]. Arsenic (III) methyltransferase (AS3MT) is one
of the main mediators of arsenic biotransformation. SNP
(Met287Thr) of AS3MT has been found to be associated
significantly with arsenic-induced skin premalignant lesions
[24]. This study was conducted in Mexico, where the par-
ticipants were subjected to nearly 110 μg/L arsenic through
drinking water. The present review is on similar SNP
studies conducted in the state of West Bengal, India
where nearly 26 million individuals are consuming ar-
senic through drinking, above the limit of 10 μg/L as
prescribed by World Health Organization [25]. In the
present review we shall elaborate on the association

Fig. 1 Metabolic events upon arsenic consumption deplete the methylation pool within the cell. “**” indicates that AS3MT is a highly polymorphic
enzyme. It’s polymorphic profile can determine the degree of biotransformation of inorganic arsenic within the cellular system. This may induce
indirectly the epigenetic susceptibility as discussed in section Polymorphism and arsenic-induced epigenetic susceptibility
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of genetic susceptibility in arsenic exposed population
mainly from West Bengal with significant emphasis
on dermatological lesions and cancers.

Candidate genes responsible for arsenic toxicity
in humans
Arsenic biotransformation pathway
Arsenic biotransformation is a multistep process involv-
ing several enzymes. Some of the notable enzymes like
AS3MT (methylated inorganic arsenic), purine nucleo-
tide phosphorylase (PNP; acts as arsenic reductase),
glutathione-S-transferase omega (GSTO; reduce arsenic
metabolites), etc. have been associated with arsenic bio-
transformation within the body. Biotransformation of ar-
senic within the body leads to conversion of arsenic
species as well as into organic intermediates for excre-
tion of arsenic through urine. In a study involving more
than 200 arsenic exposed samples from the arsenic af-
fected districts of the state of West Bengal, elaborated
that among AS3MT, PNP and GSTO(1/2), only exonic
SNP of PNP showed a significant association in develop-
ing arsenic-induced dermatological lesions [26]. The
three exonic SNP of PNP associated with arsenic-induced
toxicity from this study mostly yielded a plausible condi-
tion of structural misnomer orientations of the proteins.
For example the Gly51Ser alteration was predicted to alter
the charge distribution within the region, which was im-
portant since the substitution was close to the arsenic
binding site. It was suggested that the degree of arsenic
transmethylation and conversion to MMA or DMA deter-
mines the susceptibility towards dermatological lesions
[24]. As an explanation, the authors of these studies pre-
dicted the non-toxic values of DMA compared to MMA
and hence a high MMA:DMA within the system pre-
disposes an individual towards dermotological lesions
[23, 27]. A recent study elaborated that the rs9527 tran-
script variant of the 10q24.32 (associated with AS3MT)
in individuals led to a lowering in the quantitative pres-
ence of DMA and had a higher risk in developing skin
lesions [28]. Thus, genotype of an individual is a signifi-
cant determinant towards the risk of developing
arsenic-induced dermatological lesions.

Inflammation and arsenic toxicity
In vitro and in vivo studies have demonstrated that
arsenic-induced toxic effects includes exaggerated expres-
sion of several pro-inflammatory as well as inflammatory
factors like tumor necrosis factor alpha (TNF-α) and in-
terleukins (IL) like IL6, IL8 [7, 29, 30]. Two studies con-
ducted by our group have found significant association
between SNP of TNF-α (308 G >A), IL10 (3575 T > A)
and NLRP2 (rs1043673) with arsenic-induced toxic out-
comes in the population from West Bengal. In one study
conducted with 207 arsenic exposed individuals with skin

lesions and 190 arsenic exposed individuals without skin
lesions, it was found that SNPs of TNF-α and IL10 had a
higher association towards developing dermatological
lesions [31]. Interestingly, since both the SNPs were lo-
cated in the promoter regions of the corresponding genes,
it was found that TNF-α A-allele showed a higher expres-
sion of the gene while in IL10 A-allele showed a lower
production of IL10 in humans. Hence, genotype character-
istic of a individual may dictate the course of inflammatory
response upon arsenic-induced dermatological lesions. In
another of our study, NLR family, pyrin domain containing
2 (NLRP2), a major component of the inflammasome com-
plex imparted a higher risk of arsenic-induced dermato-
logical lesions in individuals with the C/C genotype [32].
The study also observed that coherent association of
higher cytogenetic damage within arsenic exposed indi-
viduals having this NLRP2 C/C genotype (rs1043673).
Earlier we had found a strong correlation between
higher cytogenetic damage in arsenic exposed popula-
tion with dermatological lesions [33].

Polymorphic DNA repair genes
DNA damage and subsequent repair equilibrium within
the cell is an important perspective towards cell survival.
ROS dependent DNA damage oversees several patho-
physiological outcomes in humans including cancers, as
elaborated by several authors [34, 35]. Studies have iden-
tified involvement of p53-dependent repair and cell
regulatory pathways to play an active role in DNA dam-
age recognition; bypassing which leads to development
of oncogenic outcomes [36, 37]. Since arsenic consump-
tion generates ROS, concomitant polymorphisms in sev-
eral DNA repair pathway genes have been associated
with increased cytogenetic damage upon arsenic expos-
ure. Analysis of the SNP of ERCC2 (excision repair cross-
complementation group 2) codon 751 (A > C; rs13181), it
was found that in case of arsenic-induced hyperkeratotic
individuals, an over-representation of A/A genotype was
present [38]. There was a decreased degree of DNA repair
capacity exhibited by this polymorphic ERCC2 with A/A
genotype [39]. This explains a higher cytogenetic damage
observed in arsenic exposed individuals with ERCC2 A/A
genotypes [38]. Evaluation of XRCC3 (X-Ray repair com-
plementing defective repair in Chinese hamster cells 3),
rs861539 implied that the distribution of T/T or C/T pro-
vides a beneficial protective role towards development of
arsenic-induced skin lesions as well as DNA damage [40].

Polymorphism of tumor suppressor gene- TP53
The tumor suppressor protein TP53 or p53 plays a cen-
tral role in mediating stress and DNA damage responses,
leading to either growth arrest for DNA repairing or
apoptosis [41]. The close association between codon 72
polymorphism of p53 with skin cancer has been
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reported by epidemiological survey [42]. In our study
population, having chronic exposure to arsenic, a signifi-
cant association been homozygous arginine at the codon
72 of p53 with arsenic induced keratosis [43]. Since, p53
dependent DNA repair is another mechanistic activity
found in humans, it was also found that this polymorph-
ism had a significant increase in accumulation of chromo-
somal aberrations (CA) among the keratotic individuals
[44]. We conducted a study to compare the frequency dis-
tribution of chromosomal aberrations (% aberrant cell and
CA/cell) between the risk genotype (arginine homozy-
gous) and the reference genotypes (arginine/proline het-
erozygous and proline homozygous combined) at p53
codon 72 locus with individuals without arsenic-induced
skin lesions, individuals with keratosis and total popula-
tion (two groups combined), and we found that the risk
genotype containing homozygous arginine (R/R) had
shown significantly higher chromosomal aberrations both
in form of % aberrant cell and CA/cell in two study groups
individually.

Polymorphism of glutathione S-transferase (GST) super
family enzymes
Glutathione S-transferases (GSTs) are a superfamily of
enzymes, ubiquitously present and has multiple func-
tionality like carcinogenesis [45, 46]. The mechanistic
modality of GST include conjugation of xenobiotic sub-
stances with glutathione, induction of other enzymes
and proteins within the cellular micro-environment, etc.
[47, 48]. In our study population of West Bengal, we
evaluated the null variants for GSTM1, GSTP1 and
GSTT1, where we found a significant association of the
GSTM1 null variants with arsenic exposed individuals
without skin lesions, indicating of a protective role of
GSTM1 null towards incidence of arsenic induced der-
matological lesions [49]. This observation was interest-
ing, especially with the fact that enzyme super-families
having sequence homology more than 40 %, may have
functional compensatory mechanism among the sub-
groups of the family [50, 51]. In case of GSTM1, a recent
study has evaluated the functional similarity between
GSTM1 and GSTM2 in vitro, whereby GSTM2 showed
an equivalent functional activity with GSTM1 [52].
Thus, although our earlier work observed the protective
role of GSTM1 null towards developing arsenic induced
skin lesions; the possibility of compensatory mechanism
might be of significant importance in ultimately deter-
mining the genetic susceptibility towards arsenic in-
duced skin lesions. Although it still remains a question
that may be explored further, whether glutathione conju-
gation nature executed by GSTM2 is 100 % same as that
of GSTM1. Thus, this may explain the variability in
“protection” upon GSTM1 null genotype.

Taking the arsenic exposed population in West Bengal,
India, we hitherto try to put forward the major genes
that may be considered as candidate genes to determine
the extent of arsenic toxicity in humans, as briefed in
Table 1, along with some similar works in other
populations.

Polymorphism and arsenic-induced epigenetic
susceptibility
Epimutagenesis is one of the modern terms, first
coined by Holliday [53]. Presently, the term refers to
the xenobiotic interactions of the cells, which in turn
leads to alteration in the epigenomic profile of the
cells. This may include alteration in the DNA methy-
lation, histone post translational modifications and
miRNA alterations. Arsenic exposure exhibits global
DNA hypomethylation [14, 54]. Long interspersed nu-
clear element-1 (LINE-1) hypomethylation have been
found positively associated with increase in arsenic-in-
duced bladder cancer in women, in New Hampshire, USA
[55]. Since SAM is an indigenous product of the cell, it’s
depletion by arsenic metabolism have been attributed to
such epigenetic alterations. As mentioned earlier some
genotypic variants of AS3MT or it’s splice variants
has preferential tendency of either higher or lower
MMA:DMA ratio [28, 56, 57]. Contemporary study
has evaluated the possible association of hypomethy-
lated blood DNA with increase in arsenic-induced
skin lesions [58]. In humans, arsenic-induced epigen-
etic alterations is believed to be a primary contender
for it’s toxicity whereby both hypermethylated as well
as hypomethylated promoters of tumor-suppressor as
well as DNA repair genes have been reported from
study population located in West Bengal [59, 60].
The involvement of differential methylation potential

of AS3MT genotypic transcript variants warrants for
further association studies to look into SNP of several
other such epigenetically significant enzymes like
DNMT3A (DNA methyltransferase 3A) at 448A > G has
been associated with gastric cancer [61]; the homozy-
gous variant of G/G at 201A > G of DNMT1 having a
lower risk of developing breast cancer [62]. Although
these two studies are not in conjunction to arsenic; the
DNMT-class of enzymes are important determinants of
the genomic methylation in all cells. When analyzed in
Argentina, the arsenic exposed study population
showed an association of DNMT1A SNP (rs16999593)
with lowering in DMA% [63]. Thus, when we are con-
sidering the gene and environment interactions as in
case of arsenic exposure, such genotypic parameters
should provide prognostic information about the fate of
toxic outcomes in humans. Such seeded variability in
methylation pattern also increases the probability to fall
within the niche of epimutagenic events, whose
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Table 1 Summary of SNP analysis in candidate genes

Gene
(Reference)b

Genotype; OR (95 % CI) p-Value Comments Country (Reference) Genotype; OR (95 % CI) p-Value Comments

In West Bengal Outside West Bengal/India

ERCC2 [38] codon 751 A > C (A/C + C/C)a vs
A/A; 4.77(2.75-8.23)

<0.0001 The A/A variant (Lys/Lys) of ERCC2
demonstrated a suboptimal level of
DNA repair and were significantly
associated with arsenic-induced
hyperkeratosis.

China [65] codon 751 A > C (A/C + C/C)a vs
A/A; 2.36 (1.35-4.14)

<0.01 Lys demonstrated increased risk
of arsenic induced skin lesions
among the Chinese population.

IL10 [31] promoter −3575 T > A T/Ta vs
(T/A + A/A); 2.03(1.26-3.28)

<0.01 TNF-α and IL-10 variants were
associated with increased skin
lesions as well as overexpression
and underexpression of the factors
respectively.

Bangladesh [66] rs3024496 A > G <0.05 rs3024996 was significantly
associated with arsenic induced
skin lesions after multiple
comparison adjustments

NLRP2 [32] codon 1052 (C > A); 0.67
(0.46-0.97) C/Ca vs (C/A + A/A)

<0.05 Presence of minor allele (A) lead to
prominent risk towards development
of arsenic-induced skin lesions.

No Other Studies yet found

TP53 [43] codon 72 (G > C); 2.086
(1.318-3.299)

<0.001 Arginine homozygous at codon
72 of p53 showed increased risk to
keratosis and higher chromosomal
aberration in arsenic-exposed
individuals.

Taiwan [67] codon 72 (G > C) <0.01 Proline homozygous or
heterozygous showed a relative
higher risk in renal cell carcinoma,
upon arsenic exposure.

PNP [26] codon 20 C > T C/Ca vs
(C/T + T/T); 1.69(1.08-2.66)

0.02 PNP variants are significantly
associated with arsenic induced
dermatological lesions

Taiwan [68] codon 57 C > T C/Ca vs
(C/T + T/T) 1.50 (1.03-2.18)

<0.05 PNP SNP results in a modified
and significant risk of carotid
artherosclerosis along with either
of AS3MT or GSTO1 SNP.codon 51 G > A G/Ga vs

(G/A + A/A); 1.66(1.04-2.64)
0.04

codon 57 C > T C/Ca vs
(C/T + T/T); 1.67(1.05-2.66)

0.04

TNF-a [31] promoter −308 G > A G/Ga vs
(G/A+ A/A); 3.04(1.78-5.21)

<0.001 TNF-α and IL-10 variants were
associated with increased skin
lesions as well as overexpression
and underexpression of the factors
respectively.

Taiwan [69] promoter −308 G > A <0.05 G/A + G/G (low iAs) had a higher
risk of urothelial carcinoma upon
arsenic exposure compared to
A/A (high iAs) group. OR: 14.98;
95%CI: 2.63-85.44.

XRCC3 [40] codon 241 C > T (C/T + T/T)a vs
C/C; 0.45(0.30-0.67)

<0.0001 T: Methionine allele showed
protective role against
dermatological lesions as
well as cytogenetic damage.

Hungary, Romania,
Slovakia [70]

codon 241 C > T C/Ca :
1.00 C/T:0.7 (0.54-0.92)
T/T:0.54 (0.36-0.8)

<0.01 Associated significantly basal cell
carcinoma.

a Referent Group
b West Bengal, India Reference; Mean arsenic content in drinking water from West Bengal study population was in the range of 151.74-194.82 μg/L. The WHO recommendation for arsenic through drinking water
is 10 μg/L
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variability can bring forth different degrees of diseased
outcomes in arsenic exposed individuals [64].

Conclusion
Arsenic toxicity provides a spectrum of pathophysiological
outcomes in humans. Since there is a prominent inter-
action of this xenobiotic factor with the genes, the geno-
typic features have been considered vividly to understand
the fate of toxic outcomes. The genetic make-up of an in-
dividual is hereditary. Hence in West Bengal as well as in
other parts of the world, the arsenic exposed population
possess a varied degree of cytogenetic damage as well as
other clinical symptoms like peripheral neuropathy, re-
spiratory disorders, etc. Taking studies in West Bengal as
a comprehensive paradigm of arsenic toxicity, we propose
that the genotype of an individual provides the signature
of toxic fate upon arsenic exposure in individuals.
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