McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321:624–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.
Article
CAS
PubMed
Google Scholar
Sibille-Hoang C, Froment O, Joos de ter Beerst A, Lepiece V, Huberlant G, Blauwaert G, et al. BRCA1 and BRCA2 mutations in Belgian families with a history of breast and/or ovarian cancer. Eur J Cancer Prev. 1998;7(Suppl 1):S3–5.
Article
PubMed
Google Scholar
Lalloo F, Varley J, Ellis D, Moran A, O’Dair L, Pharoah P, et al. Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet (London, England). 2003;361:1101–2.
Article
CAS
Google Scholar
Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.
Article
CAS
PubMed
Google Scholar
Morris JJ, Seifter E. The role of aromatic hydrocarbons in the genesis of breast cancer. Med Hypotheses. 1992;38:177–84.
Article
CAS
PubMed
Google Scholar
Rohrmann S, Lukas Jung S-U, Linseisen J, Pfau W. Dietary intake of meat and meat-derived heterocyclic aromatic amines and their correlation with DNA adducts in female breast tissue. Mutagenesis. 2009;24:127–32.
Article
CAS
PubMed
Google Scholar
Eliassen AH, Hankinson SE. Endogenous hormone levels and risk of breast, endometrial and ovarian cancers: prospective studies. Adv Exp Med Biol. 2008;630:148–65.
Article
CAS
PubMed
Google Scholar
Nishio Y, Nakano Y, Deguchi Y, Terato H, Ide H, IIto C, et al. Social stress induces oxidative DNA damage in mouse peripheral blood cells. Genes Environ. 2007;29:17–22.
Article
CAS
Google Scholar
Flint MS, Bovbjerg DH. DNA damage as a result of psychological stress: implications for breast cancer. Breast Cancer Res. 2012;14:320.
Article
PubMed
PubMed Central
Google Scholar
Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature. 2011;477:349–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antonova L, Aronson K, Mueller CR. Stress and breast cancer: from epidemiology to molecular biology. Breast Cancer Res. 2011;13:208.
Article
PubMed
PubMed Central
Google Scholar
Powe DG, Voss MJ, Zänker KS, Habashy HO, Green AR, Ellis IO, et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1:628–38.
Article
PubMed
PubMed Central
Google Scholar
Drell TL, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat. 2003;80:63–70.
Article
CAS
PubMed
Google Scholar
Wood AW, Huang MT, Chang RL, Newmark HL, Lehr RE, Yagi H, et al. Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: exceptional activity of ellagic acid. Proc Natl Acad Sci U S A. 1982;79:5513–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das M, Mukhtar H, Bik DP, Bickers DR. Inhibition of epidermal xenobiotic metabolism in SENCAR mice by naturally occurring plant phenols. Cancer Res. 1987;47:760–6.
CAS
PubMed
Google Scholar
Springer DL, Mann DB, Dankovic DA, Thomas BL, Wright CW, Mahlum DD. Influences of complex organic mixtures on tumor-initiating activity, DNA binding and adducts of benzo[a]pyrene. Carcinogenesis. 1989;10:131–7.
Article
CAS
PubMed
Google Scholar
Ralston SL, Coffing SL, Seidel A, Luch A, Platt KL, Baird WM. Stereoselective activation of dibenzo[a, l]pyrene and its trans-11,12-dihydrodiol to fjord region 11,12-diol 13,14-epoxides in a human mammary carcinoma MCF-7 cell-mediated V79 cell mutation assay. Chem Res Toxicol. 1997;10:687–93.
Article
CAS
PubMed
Google Scholar
Knize MG, Felton JS. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr Rev. 2005;63:158–65.
Article
PubMed
Google Scholar
Sinha R, Gustafson DR, Kulldorff M, Wen WQ, Cerhan JR, Zheng W. 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk. J Natl Cancer Inst. 2000;92:1352–4.
Article
CAS
PubMed
Google Scholar
Steck SE, Gaudet MM, Eng SM, Britton JA, Teitelbaum SL, Neugut AI, et al. Cooked meat and risk of breast cancer--lifetime versus recent dietary intake. Epidemiology. 2007;18:373–82.
Article
PubMed
Google Scholar
Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.
Article
CAS
PubMed
Google Scholar
Tao W. The mitotic checkpoint in cancer therapy. Cell Cycle Taylor Francis. 2014;4:1495–9.
Article
Google Scholar
Stuckey AR, Onstad MA. Hereditary breast cancer: an update on risk assessment and genetic testing in 2015. Am J Obstet Gynecol. 2015;213:161–5.
Article
PubMed
Google Scholar
Brosens LAA, Offerhaus GJA, Giardiello FM. Hereditary colorectal cancer: genetics and screening. Surg Clin North Am. 2015;95:1067–80.
Article
PubMed
PubMed Central
Google Scholar
Korsh J, Shen A, Aliano K, Davenport T. Polycyclic aromatic hydrocarbons and breast cancer: a review of the literature. Breast Care (Basel). 2015;10:316–8.
Article
Google Scholar
Yamazaki S, Sakakibara H, Takemura H, Shimoi K. 4-hydroxyestradiol induces γ-H2AX in the presence of an inhibitor of catechol-O-methyltransferase in human breast cancer MCF-7 cells. Genes Environ. 2012;34:129–35.
Article
CAS
Google Scholar
Glaser R, Thorn BE, Tarr KL, Kiecolt-Glaser JK, D’Ambrosio SM. Effects of stress on methyltransferase synthesis: an important DNA repair enzyme. Health Psychol. 1985;4:403–12.
Article
CAS
PubMed
Google Scholar
Flint MS, Carroll JE, Jenkins FJ, Chambers WH, Han ML, Baum A. Genomic profiling of restraint stress-induced alterations in mouse T lymphocytes. J Neuroimmunol. 2005;167:34–44.
Article
CAS
PubMed
Google Scholar
Key T, Appleby P, Barnes I, Reeves G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94:606–16.
Article
CAS
PubMed
Google Scholar
Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92:994–1000.
Article
CAS
PubMed
Google Scholar
Eliassen AH, Ziegler RG, Rosner B, Veenstra TD, Roman JM, Xu X, et al. Reproducibility of fifteen urinary estrogens and estrogen metabolites over a 2- to 3-year period in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009;18:2860–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis JW, Gut M, Lemon HM, Wotiz HH. Studies in steroid metabolism. V. The conversion of testosterone-4-C14 to estrogens by human ovarian tissue. J Biol Chem. 1956;222:487–95.
CAS
PubMed
Google Scholar
Thomas HV, Reeves GK, Key TJ. Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Causes Control. 1997;8:922–8.
Article
CAS
PubMed
Google Scholar
Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82.
Article
CAS
PubMed
Google Scholar
Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PHM, Biessy C, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12:1071–82.
Article
CAS
PubMed
Google Scholar
Takemura H, Sakakibara H, Yamazaki S, Shimoi K. Breast cancer and flavonoids - a role in prevention. Curr Pharm Des. 2013;19:6125–32.
Article
CAS
PubMed
Google Scholar
Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.
Article
CAS
PubMed
Google Scholar
Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631–43.
Article
CAS
PubMed
Google Scholar
Santen RJ, Yue W, Wang J-P. Estrogen metabolites and breast cancer. Steroids. 2015;99:61–6.
Article
CAS
PubMed
Google Scholar
Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A. 1996;93:9776–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spink DC, Eugster HP, Lincoln DW, Schuetz JD, Schuetz EG, Johnson JA, et al. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1A1: a comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA. Arch Biochem Biophys. 1992;293:342–8.
Article
CAS
PubMed
Google Scholar
Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994;368:237–9.
Article
CAS
PubMed
Google Scholar
Nelson SD, Mitchell JR, Dybing E, Sasame HA. Cytochrome P-450-mediated oxidation of 2-hydroxyestrogens to reactive intermediates. Biochem Biophys Res Commun. 1976;70:1157–65.
Article
CAS
PubMed
Google Scholar
Abul-Hajj YJ. Synthesis of 3,4-estrogen-o-quinone. J Steroid Biochem. 1984;21:621–2.
Article
CAS
PubMed
Google Scholar
Dwivedy I, Devanesan P, Cremonesi P, Rogan E, Cavalieri E. Synthesis and characterization of estrogen 2,3- and 3,4-quinones. Comparison of DNA adducts formed by the quinones versus horseradish peroxidase-activated catechol estrogens. Chem Res Toxicol. 1992;5:828–33.
Article
CAS
PubMed
Google Scholar
Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A. 1997;94:10937–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stack DE, Byun J, Gross ML, Rogan EG, Cavalieri EL. Molecular characteristics of catechol estrogen quinones in reactions with deoxyribonucleosides. Chem Res Toxicol. 1996;9:851–9.
Article
CAS
PubMed
Google Scholar
Hurd C, Khattree N, Alban P, Nag K, Jhanwar SC, Dinda S, et al. Hormonal regulation of the p53 tumor suppressor protein in T47D human breast carcinoma cell line. J Biol Chem. 1995;270:28507–10.
Article
CAS
PubMed
Google Scholar
Akanni A, Abul-Hajj YJ. Estrogen-nucleic acid adducts: reaction of 3,4-estrone-o-quinone radical anion with deoxyribonucleosides. Chem Res Toxicol. 1997;10:760–6.
Article
CAS
PubMed
Google Scholar
Wang Z, Chandrasena ER, Yuan Y, Peng K, van Breemen RB, Thatcher GRJ, et al. Redox cycling of catechol estrogens generating apurinic/apyrimidinic sites and 8-oxo-deoxyguanosine via reactive oxygen species differentiates equine and human estrogens. Chem Res Toxicol. 2010;23:1365–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen W, Ren Z, Shu XO, Cai Q, Ye C, Gao Y-T, et al. Expression of cytochrome P450 1B1 and catechol-O-methyltransferase in breast tissue and their associations with breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2007;16:917–20.
Article
CAS
PubMed
Google Scholar
Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev. 2000;21:40–54.
CAS
PubMed
Google Scholar
Fleck SC, Hildebrand AA, Pfeiffer E, Metzler M. Catechol metabolites of zeranol and 17β-estradiol: a comparative in vitro study on the induction of oxidative DNA damage and methylation by catechol-O-methyltransferase. Toxicol Lett. 2012;210:9–14.
Article
CAS
PubMed
Google Scholar
Chakravarti D, Mailander PC, Li KM, Higginbotham S, Zhang HL, Gross ML, et al. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene. Oncogene. 2001;20:7945–53.
Article
CAS
PubMed
Google Scholar
McEwen BS. Protective and damaging effects of stress mediators: the good and bad sides of the response to stress. Metabolism. 2002;51:2–4.
Article
CAS
PubMed
Google Scholar
McEwen BS. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583:174–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG, et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer. 2006;6:240–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ondicova K, Mravec B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010;11:596–601.
Article
PubMed
Google Scholar
Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9:4514–21.
CAS
PubMed
Google Scholar
Cao L, During MJ. What is the brain-cancer connection? Annu Rev Neurosci. 2012;35:331–45.
Article
CAS
PubMed
Google Scholar
Cooper CL, Cooper R, Faragher EB. Incidence and perception of psychosocial stress: the relationship with breast cancer. Psychol Med. 1989;19:415–22.
Article
CAS
PubMed
Google Scholar
Chen CC, David AS, Nunnerley H, Michell M, Dawson JL, Berry H, et al. Adverse life events and breast cancer: case–control study. BMJ. 1995;311:1527–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kruk J, Aboul-Enein HY. Psychological stress and the risk of breast cancer: a case–control study. Cancer Detect Prev. 2004;28:399–408.
Article
PubMed
Google Scholar
Kruk J. Self-reported psychological stress and the risk of breast cancer: a case–control study. Stress. 2012;15:162–71.
Article
PubMed
Google Scholar
Kocic B, Filipovic S, Vrbic S, Pejcic I, Rancic N, Cvetanovic A, et al. Stressful life events and breast cancer risk: a hospital-based case–control study. J BUON. 2015;20:487–91.
PubMed
Google Scholar
Lillberg K, Verkasalo PK, Kaprio J, Teppo L, Helenius H, Koskenvuo M. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003;157:415–23.
Article
PubMed
Google Scholar
Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD, et al. Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci U S A. 2009;106:22393–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams JB, Pang D, Delgado B, Kocherginsky M, Tretiakova M, Krausz T, et al. A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila). 2009;2:850–61.
Article
CAS
Google Scholar
Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12:939–44.
Article
CAS
PubMed
Google Scholar
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70:7042–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001;93:1557–62.
Article
CAS
PubMed
Google Scholar
Hansen J. Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark. Cancer Causes Control. 2006;17:531–7.
Article
PubMed
Google Scholar
Hansen J, Stevens RG. Case–control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer. 2012;48:1722–9.
Article
PubMed
Google Scholar
Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol. 2010;2010:829351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8:1065–6.
Article
PubMed
Google Scholar
Flint MS, Baum A, Chambers WH, Jenkins FJ. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology. 2007;32:470–9.
Article
CAS
PubMed
Google Scholar
Gidron Y, Russ K, Tissarchondou H, Warner J. The relation between psychological factors and DNA-damage: a critical review. Biol Psychol. 2006;72:291–304.
Article
PubMed
Google Scholar
Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci U S A. 1999;96:1059–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto T, Adachi K, Muraishi A, Seki Y, Hidaka T, Toshima H. Induction of DNA breaks in cardiac myoblast cells by norepinephrine. Biochem Mol Biol Int. 1996;38:821–7.
CAS
PubMed
Google Scholar
Djelic N, Anderson D. The effect of the antioxidant catalase on oestrogens, triiodothyronine, and noradrenaline in the Comet assay. Teratog Carcinog Mutagen. 2003;Suppl 2:69–81. https://www.ncbi.nlm.nih.gov/pubmed/14691981.
Cwikel JG, Gidron Y, Quastel M. Low-dose environmental radiation, DNA damage, and cancer: the possible contribution of psychological factors. Psychol Health Med. 2010;15:1–16.
Article
PubMed
Google Scholar
Hara MR, Sachs BD, Caron MG, Lefkowitz RJ. Pharmacological blockade of a β(2)AR-β-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle. 2013;12:219–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki S, Miyoshi N, Kawabata K, Yasuda M, Shimoi K. Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking β2-adrenergic signaling. Arch Biochem Biophys. 2014;557:18–27.
Article
CAS
PubMed
Google Scholar
Yamazaki S, Sakakibara H, Takemura H, Yasuda M, Shimoi K. Quercetin-3-O-glucronide inhibits noradrenaline binding to α2-adrenergic receptor, thus suppressing DNA damage induced by treatment with 4-hydroxyestradiol and noradrenaline in MCF-10A cells. J Steroid Biochem Mol Biol. 2014;143:122–9.
Article
CAS
PubMed
Google Scholar
Castagnetta LAM, Granata OM, Traina A, Ravazzolo B, Amoroso M, Miele M, et al. Tissue content of hydroxyestrogens in relation to survival of breast cancer patients. Clin Cancer Res. 2002;8:3146–55.
CAS
PubMed
Google Scholar
Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100:1920–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doll R. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc. 1990;49:119–31.
Article
CAS
PubMed
Google Scholar
Johnson IT. New approaches to the role of diet in the prevention of cancers of the alimentary tract. Mutat Res. 2004;551:9–28.
Article
CAS
PubMed
Google Scholar
Takemura H, Itoh T, Yamamoto K, Sakakibara H, Shimoi K. Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorg Med Chem. 2010;18:6310–5.
Article
CAS
PubMed
Google Scholar
Shimoi K, Yoshizumi K, Kido T, Usui Y, Yumoto T. Absorption and urinary excretion of quercetin, rutin, and alphaG-rutin, a water soluble flavonoid, in rats. J Agric Food Chem. 2003;51:2785–9.
Article
CAS
PubMed
Google Scholar
Mochizuki M, Kajiya K, Terao J, Kaji K, Kumazawa S, Nakayama T, et al. Effect of quercetin conjugates on vascular permeability and expression of adhesion molecules. Biofactors. 2004;22:201–4.
Article
CAS
PubMed
Google Scholar
Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283:9424–34.
Article
CAS
PubMed
Google Scholar
Murota K, Shimizu S, Chujo H, Moon JH, Terao J. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2. Arch Biochem Biophys. 2000;384:391–7.
Article
CAS
PubMed
Google Scholar
Murota K, Matsuda N, Kashino Y, Fujikura Y, Nakamura T, Kato Y, et al. Alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch Biochem Biophys. 2010;501:91–7.
Article
CAS
PubMed
Google Scholar
Yamashita N, Tanemura H, Kawanishi S. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat Res. 1999;425:107–15.
Article
CAS
PubMed
Google Scholar
Das A, Wang JH, Lien EJ. Carcinogenicity, mutagenicity and cancer preventing activities of flavonoids: a structure-system-activity relationship (SSAR) analysis. Prog drug Res Fortschritte der Arzneimittelforschung Progrès des Rech Pharm. 1994;42:133–66.
CAS
Google Scholar
Murota K, Hotta A, Ido H, Kawai Y, Moon J-H, Sekido K, et al. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J Med Invest. 2007;54:370–4.
Article
PubMed
Google Scholar
Slotkin TA, Zhang J, Dancel R, Garcia SJ, Willis C, Seidler FJ. Beta-adrenoceptor signaling and its control of cell replication in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2000;60:153–66.
Article
CAS
PubMed
Google Scholar
Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, et al. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem. 2004;12:1559–67.
Article
CAS
PubMed
Google Scholar
Messina M, McCaskill-Stevens W, Lampe JW. Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst. 2006;98:1275–84.
Article
PubMed
Google Scholar
Wei YK, Gamra I, Davenport A, Lester R, Zhao L, Wei Y. Genistein induces cytochrome P450 1B1 gene expression and cell proliferation in human breast cancer MCF-7 cells. J Environ Pathol Toxicol Oncol. 2015;34:153–9.
Article
PubMed
Google Scholar
Leung HY, Yung LH, Poon CH, Shi G, Lu A-L, Leung LK. Genistein protects against polycyclic aromatic hydrocarbon-induced oxidative DNA damage in non-cancerous breast cells MCF-10A. Br J Nutr. 2009;101:257–62.
Article
CAS
PubMed
Google Scholar