Dronkert ML, Kanaar R. Repair of DNA interstrand cross-links. Mutat Res. 2001;486(4):217–47.
Article
CAS
PubMed
Google Scholar
Guainazzi A, Scharer OD. Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell Mol Life Sci. 2010;67(21):3683–97. doi:10.1007/s00018-010-0492-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Legerski RJ. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. Environ Mol Mutagen. 2010;51(6):540–51. doi:10.1002/em.20566.
PubMed Central
CAS
PubMed
Google Scholar
Clauson C, Scharer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol. 2013;5(10):a012732. doi:10.1101/cshperspect.a012732.
Article
PubMed Central
PubMed
Google Scholar
Liu X, Lao Y, Yang IY, Hecht SS, Moriya M. Replication-coupled repair of crotonaldehyde/acetaldehyde-induced guanine-guanine interstrand cross-links and their mutagenicity. Biochemistry. 2006;45(42):12898–905. doi:10.1021/bi060792v.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu G, Song L, Lippard SJ. Visualizing inhibition of nucleosome mobility and transcription by cisplatin-DNA interstrand crosslinks in live mammalian cells. Cancer Res. 2013;73(14):4451–60. doi:10.1158/0008-5472.CAN-13-0198.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 2006;25(20):4921–32. doi:10.1038/sj.emboj.7601344.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stern RS. Psoralen and ultraviolet a light therapy for psoriasis. N Engl J Med. 2007;357(7):682–90. doi:10.1056/NEJMct072317.
Article
CAS
PubMed
Google Scholar
Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science. 1995;270(5243):1842–5.
Article
CAS
PubMed
Google Scholar
Rink SM, Hopkins PB. A mechlorethamine-induced DNA interstrand cross-link bends duplex DNA. Biochemistry. 1995;34(4):1439–45.
Article
CAS
PubMed
Google Scholar
Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574–8.
Article
CAS
PubMed
Google Scholar
McHugh PJ, Sones WR, Hartley JA. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20(10):3425–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mutzhas MF, Holzle E, Hofmann C, Plewig G. A new apparatus with high radiation energy between 320-460 nm: physical description and dermatological applications. J Invest Dermatol. 1981;76(1):42–7.
Article
CAS
PubMed
Google Scholar
Haran TE, Crothers DM. Phased psoralen cross-links do not bend the DNA double helix. Biochemistry. 1988;27(18):6967–71.
Article
CAS
PubMed
Google Scholar
Hwang GS, Kim JK, Choi BS. The solution structure of a psoralen cross-linked DNA duplex by NMR and relaxation matrix refinement. Biochem Biophys Res Commun. 1996;219(1):191–7. doi:10.1006/bbrc.1996.0204.
Article
CAS
PubMed
Google Scholar
Norman D, Live D, Sastry M, Lipman R, Hingerty BE, Tomasz M, et al. NMR and computational characterization of mitomycin cross-linked to adjacent deoxyguanosines in the minor groove of the d(T-A-C-G-T-A).d(T-A-C-G-T-A) duplex. Biochemistry. 1990;29(11):2861–75.
Article
CAS
PubMed
Google Scholar
Rink SM, Lipman R, Alley SC, Hopkins PB, Tomasz M. Bending of DNA by the mitomycin C-induced, GpG intrastrand cross-link. Chem Res Toxicol. 1996;9(2):382–9. doi:10.1021/tx950156q.
Article
CAS
PubMed
Google Scholar
McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2(8):483–90. doi:10.1016/S1470-2045(01)00454-5.
Article
CAS
PubMed
Google Scholar
Sarkar S, Davies AA, Ulrich HD, McHugh PJ. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J. 2006;25(6):1285–94. doi:10.1038/sj.emboj.7600993.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wood RD. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen. 2010;51(6):520–6. doi:10.1002/em.20569.
PubMed Central
CAS
PubMed
Google Scholar
McHugh PJ, Sarkar S. DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle. 2006;5(10):1044–7.
Article
CAS
PubMed
Google Scholar
Williams HL, Gottesman ME, Gautier J. Replication-independent repair of DNA interstrand crosslinks. Mol Cell. 2012;47(1):140–7. doi:10.1016/j.molcel.2012.05.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klug AR, Harbut MB, Lloyd RS, Minko IG. Replication bypass of N2-N2 deoxyguanosine interstrand cross-links by human DNA polymerases eta and iota. Chem Res Toxicol. 2012;25(3):755–62. doi:10.1021/tx300011w.
Article
PubMed Central
CAS
PubMed
Google Scholar
Minko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB, et al. Role for DNA polymerase kappa in the processing of N2-N2-guanine interstrand cross-links. J Biol Chem. 2008;283(25):17075–82. doi:10.1074/jbc.M801238200.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000;20(21):7980–90.
Article
PubMed Central
PubMed
Google Scholar
Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol. 2004;24(13):5776–87. doi:10.1128/MCB.24.13.5776-5787.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defects in interstrand cross-link uncoupling do not account for the extreme sensitivity of ERCC1 and XPF cells to cisplatin. Nucleic Acids Res. 2002;30(17):3848–56.
Article
PubMed Central
PubMed
Google Scholar
Enzlin JH, Scharer OD. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 2002;21(8):2045–53. doi:10.1093/emboj/21.8.2045.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C, Ciccia A, et al. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J. 2003;22(22):6137–47. doi:10.1093/emboj/cdg580.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen XB, Melchionna R, Denis CM, Gaillard PH, Blasina A, Van de Weyer I, et al. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell. 2001;8(5):1117–27.
Article
CAS
PubMed
Google Scholar
Rothfuss A, Grompe M. Repair kinetics of genomic interstrand DNAcross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2004;24(1):123–34.
Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol. 2001;21(8):2858–66. doi:10.1128/MCB.21.8.2858-2866.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol. 2002;22(2):669–79.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol. 2006;26(3):976–89. doi:10.1128/MCB.26.3.976-989.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010;11(10):683–7. doi:10.1038/nrm2974.
Article
CAS
PubMed
Google Scholar
Bakker ST, de Winter JP, te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech. 2013;6(1):40–7. doi:10.1242/dmm.009795.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vermeij WP, Hoeijmakers JH, Pothof J. Aging: not all DNA damage is equal. Curr Opin Genet Dev. 2014;26:124–30. doi:10.1016/j.gde.2014.06.006.
Article
CAS
PubMed
Google Scholar
Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood. 2006;107(11):4223–33. doi:10.1182/blood-2005-10-4240.
Article
CAS
PubMed
Google Scholar
Wilson DB, Link DC, Mason PJ, Bessler M. Inherited bone marrow failure syndromes in adolescents and young adults. Ann Med. 2014;46(6):353–63. doi:10.3109/07853890.2014.915579.
Article
PubMed Central
PubMed
Google Scholar
Hira A, Yoshida K, Sato K, Okuno Y, Shiraishi Y, Chiba K, et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet. 2015;96(6):1001–7. doi:10.1016/j.ajhg.2015.04.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85. doi:10.1056/NEJMra0804615.
Article
CAS
PubMed
Google Scholar
Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134(5-6):161–70. doi:10.1016/j.mad.2013.02.006.
Article
CAS
PubMed
Google Scholar
Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum Mol Genet. 2009;18(R2):R224–30. doi:10.1093/hmg/ddp390.
Article
CAS
PubMed
Google Scholar
Sepe S, Payan-Gomez C, Milanese C, Hoeijmakers JH, Mastroberardino PG. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair (Amst). 2013;12(8):568–77. doi:10.1016/j.dnarep.2013.04.009.
Article
CAS
Google Scholar
Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012;489(7417):571–5. doi:10.1038/nature11368.
Article
CAS
PubMed
Google Scholar
Zhang J, Walter JC. Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst). 2014;19:135–42. doi:10.1016/j.dnarep.2014.03.018.
Article
CAS
Google Scholar
Nishimura K, Ishiai M, Horikawa K, Fukagawa T, Takata M, Takisawa H, et al. Mcm8 and Mcm9 form a complex that functions in homologous recombination repair induced by DNA interstrand crosslinks. Mol Cell. 2012;47(4):511–22. doi:10.1016/j.molcel.2012.05.047.
Article
CAS
PubMed
Google Scholar
Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell. 2008;134(6):969–80. doi:10.1016/j.cell.2008.08.030.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science. 2009;326(5960):1698–701. doi:10.1126/science.1182372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Long DT, Raschle M, Joukov V, Walter JC. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science. 2011;333(6038):84–7. doi:10.1126/science.1204258.
Article
PubMed Central
CAS
PubMed
Google Scholar
Budzowska M, Graham TG, Sobeck A, Waga S, Walter JC. Regulation of the Rev1-pol zeta complex during bypass of a DNA interstrand cross-link. EMBO J. 2015;34(14):1971–85. doi:10.15252/embj.201490878.
Article
CAS
PubMed
Google Scholar
Tian Y, Paramasivam M, Ghosal G, Chen D, Shen X, Huang Y, et al. UHRF1 Contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep. 2015;10(12):1957–66. doi:10.1016/j.celrep.2015.03.038.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liang CC, Zhan B, Yoshikawa Y, Haas W, Gygi SP, Cohn MA. UHRF1 Is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi Anemia pathway. Cell Rep. 2015;10(12):1947–56. doi:10.1016/j.celrep.2015.02.053.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun. 2013;4:1563. doi:10.1038/ncomms2562.
Article
PubMed
Google Scholar
Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502(7470):249–53. doi:10.1038/nature12488.
Article
CAS
PubMed
Google Scholar
Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A, et al. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem. 2002;277(37):34549–55. doi:10.1074/jbc.M205189200.
Article
CAS
PubMed
Google Scholar
Tachibana A, Kato T, Ejima Y, Yamada T, Shimizu T, Yang L, et al. The FANCA gene in Japanese Fanconi anemia: reports of eight novel mutations and analysis of sequence variability. Hum Mutat. 1999;13(3):237–44. doi:10.1002/(SICI)1098-1004(1999)13:3<237::AID-HUMU8>3.0.CO;2-F.
Article
CAS
PubMed
Google Scholar
Fei P, Yin J, Wang W. New advances in the DNA damage response network of Fanconi anemia and BRCA proteins. FAAP95 replaces BRCA2 as the true FANCB protein. Cell Cycle. 2005;4(1):80–6.
Article
CAS
PubMed
Google Scholar
Strathdee CA, Gavish H, Shannon WR, Buchwald M. Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature. 1992;356(6372):763–7. doi:10.1038/356763a0.
Article
CAS
PubMed
Google Scholar
Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297(5581):606–9. doi:10.1126/science.1073834.
Article
CAS
PubMed
Google Scholar
Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell. 2001;7(2):241–8.
Article
CAS
PubMed
Google Scholar
Waisfisz Q, Saar K, Morgan NV, Altay C, Leegwater PA, de Winter JP, et al. The Fanconi anemia group E gene, FANCE, maps to chromosome 6p. Am J Hum Genet. 1999;64(5):1400–5. doi:10.1086/302385.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Winter JP, Leveille F, van Berkel CG, Rooimans MA, van Der Weel L, Steltenpool J, et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am J Hum Genet. 2000;67(5):1306–8. doi:10.1016/S0002-9297(07)62959-0.
Article
PubMed Central
PubMed
Google Scholar
de Winter JP, Rooimans MA, van Der Weel L, van Berkel CG, Alon N, Bosnoyan-Collins L, et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat Genet. 2000;24(1):15–6. doi:10.1038/71626.
Article
PubMed
Google Scholar
de Winter JP, Waisfisz Q, Rooimans MA, van Berkel CG, Bosnoyan-Collins L, Alon N, et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet. 1998;20(3):281–3. doi:10.1038/3093.
Article
PubMed
Google Scholar
Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald 3rd ER, Hurov KE, Luo J, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007;129(2):289–301. doi:10.1016/j.cell.2007.03.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dorsman JC, Levitus M, Rockx D, Rooimans MA, Oostra AB, Haitjema A, et al. Identification of the Fanconi anemia complementation group I gene. FANCI Cell Oncol. 2007;29(3):211–8.
CAS
PubMed
Google Scholar
Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet. 2005;37(9):934–5. doi:10.1038/ng1625.
Article
CAS
PubMed
Google Scholar
Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005;8(3):255–65. doi:10.1016/j.ccr.2005.08.004.
Article
CAS
PubMed
Google Scholar
Meetei AR, Yan Z, Wang W. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle. 2004;3(2):179–81.
Article
CAS
PubMed
Google Scholar
Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165–7. doi:10.1038/ng1959.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39(2):162–4. doi:10.1038/ng1947.
Article
CAS
PubMed
Google Scholar
Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42(5):406–9. doi:10.1038/ng.570.
Article
CAS
PubMed
Google Scholar
Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4. doi:10.1038/ng.569.
Article
CAS
PubMed
Google Scholar
Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A. Mutations of the SLX4 gene in Fanconi anemia. Nat Genet. 2011;43(2):142–6. doi:10.1038/ng.750.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson LH, Brookman KW, Weber CA, Salazar EP, Reardon JT, Sancar A, et al. Molecular cloning of the human nucleotide-excision-repair gene ERCC4. Proc Natl Acad Sci U S A. 1994;91(15):6855–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 2006;444(7122):1038–43. doi:10.1038/nature05456.
Article
CAS
PubMed
Google Scholar
Osorio A, Bogliolo M, Fernandez V, Barroso A, de la Hoya M, Caldes T, et al. Evaluation of rare variants in the new fanconi anemia gene ERCC4 (FANCQ) as familial breast/ovarian cancer susceptibility alleles. Hum Mutat. 2013;34(12):1615–8. doi:10.1002/humu.22438.
Article
CAS
PubMed
Google Scholar
Sawyer SL, Tian L, Kahkonen M, Schwartzentruber J, Kircher M. University of Washington Centre for Mendelian G et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5(2):135–42. doi:10.1158/2159-8290.CD-14-1156.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, Kennedy JA, et al. Deficiency of UBE2T, the E2 Ubiquitin Ligase necessary for FANCD2 and FANCI Ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep. 2015;12(1):35–41. doi:10.1016/j.celrep.2015.06.014.
Article
CAS
PubMed
Google Scholar
Jaspers NG, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR, et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 2007;80(3):457–66. doi:10.1086/512486.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature. 1990;348(6296):73–6. doi:10.1038/348073a0.
Article
CAS
PubMed
Google Scholar
Koken MH, Vreeken C, Bol SA, Cheng NC, Jaspers-Dekker I, Hoeijmakers JH, et al. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3. Nucleic Acids Res. 1992;20(21):5541–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weeda G, Eveno E, Donker I, Vermeulen W, Chevallier-Lagente O, Taieb A, et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet. 1997;60(2):320–9.
PubMed Central
CAS
PubMed
Google Scholar
Oh KS, Khan SG, Jaspers NG, Raams A, Ueda T, Lehmann A, et al. Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): xeroderma pigmentosum without and with Cockayne syndrome. Hum Mutat. 2006;27(11):1092–103. doi:10.1002/humu.20392.
Article
CAS
PubMed
Google Scholar
Legerski R, Peterson C. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature. 1992;359(6390):70–3. doi:10.1038/359070a0.
Article
CAS
PubMed
Google Scholar
Arrand JE, Bone NM, Johnson RT. Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells. Proc Natl Acad Sci U S A. 1989;86(18):6997–7001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Broughton BC, Steingrimsdottir H, Weber CA, Lehmann AR. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet. 1994;7(2):189–94. doi:10.1038/ng0694-189.
Article
CAS
PubMed
Google Scholar
van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH. Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res. 1999;27(14):2898–904.
Article
PubMed Central
PubMed
Google Scholar
Chu G, Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science. 1988;242(4878):564–7.
Article
CAS
PubMed
Google Scholar
Vermeulen W, Jaeken J, Jaspers NG, Bootsma D, Hoeijmakers JH. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome. Am J Hum Genet. 1993;53(1):185–92.
PubMed Central
CAS
PubMed
Google Scholar
Nouspikel T, Clarkson SG. Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient. Hum Mol Genet. 1994;3(6):963–7.
Article
CAS
PubMed
Google Scholar
Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 1995;82(4):555–64.
Article
CAS
PubMed
Google Scholar
Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell. 1992;71(6):939–53.
Article
CAS
PubMed
Google Scholar
Coin F, Proietti De Santis L, Nardo T, Zlobinskaya O, Stefanini M, Egly JM. p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell. 2006;21(2):215–26. doi:10.1016/j.molcel.2005.10.024.
Article
CAS
PubMed
Google Scholar