Sharma P, Allison JP. Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol. 2020;20(2):75–6.
Article
CAS
Google Scholar
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.
Article
CAS
Google Scholar
Toyokuni S, Kong Y, Cheng Z, Sato K, Hayashi S, Ito F, et al. Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers (Basel). 2020;12(11):3320.
Article
CAS
Google Scholar
Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med. 2017;108:610–26.
Article
CAS
Google Scholar
Toyokuni S, Yanatori I, Kong Y, Zheng H, Motooka Y, Jiang L. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci. 2020;111:2665–71.
Article
CAS
Google Scholar
Koppenol WH, Hider RH. Iron and redox cycling Do’s and don’ts. Free Radic Biol Med. 2019;133:3–10.
Article
CAS
Google Scholar
Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med. 1996;20:553–66.
Article
CAS
Google Scholar
Toyokuni S. Iron and thiols as two major players in carcinogenesis: friends or foes? Front Pharmacol. 2014;5:200.
Article
Google Scholar
Toyokuni S. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosisresistance to non-thermal plasma therapy. Pathol Int. 2016;66:245–59.
Article
CAS
Google Scholar
Zacharski L, Chow B, Howes P, Shamayeva G, Baron J, Dalman R, et al. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: Results from a randomized trial. J Natl Cancer Inst. 2008;100:996–1002.
Article
CAS
Google Scholar
Akatsuka S, Yamashita Y, Ohara H, Liu YT, Izumiya M, Abe K, et al. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS ONE. 2012;7(8): e43403.
Article
CAS
Google Scholar
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr. 2022;71(2):78–88.
Article
CAS
Google Scholar
Ebina Y, Okada S, Hamazaki S, Ogino F, Li JL, Midorikawa O. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum- nitrilotriacetate complexes in rats. J Natl Cancer Inst. 1986;76:107–13.
CAS
Google Scholar
Li JL, Okada S, Hamazaki S, Ebina Y, Midorikawa O. Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res. 1987;47:1867–9.
CAS
Google Scholar
Nishiyama Y, Suwa H, Okamoto K, Fukumoto M, Hiai H, Toyokuni S. Low incidence of point mutations in H-, K- and N-ras oncogenes and p53 tumor suppressor gene in renal cell carcinoma and peritoneal mesothelioma of Wistar rats induced by ferric nitrilotriacetate. Jpn J Cancer Res. 1995;86:1150–8.
Article
CAS
Google Scholar
Toyokuni S. Mechanisms of asbestos-induced carcinogenesis. Nagoya J Med Sci. 2009;71(1–2):1–10.
CAS
Google Scholar
Jiang L, Akatsuka S, Nagai H, Chew SH, Ohara H, Okazaki Y, et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J Pathol. 2012;228:366–77.
Article
CAS
Google Scholar
Toyokuni S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: Toward the era of mesothelioma prevention. Free Radic Biol Med. 2019;133:206–15.
Article
CAS
Google Scholar
Toyokuni S, Ito F, Motooka Y. Role of ferroptosis in nanofiber-induced carcinogenesis. Metallomics Res. 2021;1(1):14–21.
Google Scholar
Nagai H, Okazaki Y, Chew SH, Misawa N, Yasui H, Toyokuni S. Deferasirox induces mesenchymal-epithelial transition in crocidolite-induced mesothelial carcinogenesis in rats. Cancer Prev Res (Phila). 2013;6:1222–30.
Article
CAS
Google Scholar
Ohara Y, Chew SH, Shibata T, Okazaki Y, Yamashita K, Toyokuni S. Phlebotomy as a preventive measure for crocidolite-induced mesothelioma in male rats. Cancer Sci. 2018;109(2):330–9.
Article
CAS
Google Scholar
Toyokuni S, Kong Y, Zheng H, Mi D, Katabuchi M, Motooka Y, et al. Double-edged Sword Role of Iron-loaded Ferritin in Extracellular Vesicles. J Cancer Prev. 2021;26(4):244–9.
Article
Google Scholar
Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–55.
Article
CAS
Google Scholar
Drakesmith H, Nemeth E, Ganz T. Ironing out Ferroportin. Cell Metab. 2015;22(5):777–87.
Article
CAS
Google Scholar
Toyokuni S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2009;100(1):9–16.
Article
CAS
Google Scholar
Sutherland R, Delia D, Schneider C, Newman R, Kemshead J, Greaves M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc Natl Acad Sci U S A. 1981;78(7):4515–9.
Article
CAS
Google Scholar
Hentze MW, Keim S, Papadopoulos P, O’Brien S, Modi W, Drysdale J, et al. Cloning, characterization, expression, and chromosomal localization of a human ferritin heavy-chain gene. Proc Natl Acad Sci U S A. 1986;83(19):7226–30.
Article
CAS
Google Scholar
Gunshin H, Mackenzie B, Berger U, Gunshin Y, Romero M, Boron W, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8.
Article
CAS
Google Scholar
Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt S, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.
Article
CAS
Google Scholar
Gutteridge J, Rowley D, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts Detection of “free” iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981;199(1):263–5.
Article
CAS
Google Scholar
Yanatori I, Richardson DR, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem. 2017;292(32):13205–29.
Article
CAS
Google Scholar
Yanatori I, Richardson DR, Toyokuni S, Kishi F. The new role of poly (rC)-binding proteins as iron transport chaperones: Proteins that could couple with inter-organelle interactions to safely traffic iron. Biochim Biophys Acta Gen Subj. 2020;1864(11): 129685.
Article
CAS
Google Scholar
Richardson DR, Lok HC. The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta. 2008;1780(4):638–51.
Article
CAS
Google Scholar
Yanatori I, Richardson DR, Dhekne HS, Toyokuni S, Kishi F. CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood. 2021;138(16):1490–503.
Article
CAS
Google Scholar
Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30(4):691–6.
Article
CAS
Google Scholar
Codd R, Richardson-Sanchez T, Telfer TJ, Gotsbacher MP. Advances in the Chemical Biology of Desferrioxamine B. ACS Chem Biol. 2018;13(1):11–25.
Article
CAS
Google Scholar
Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197–213.
Article
CAS
Google Scholar
Ito F, Yanatori I, Maeda Y, Nimura K, Ito S, Hirayama T, et al. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and beta-catenin induction in mesothelium. Redox Biol. 2020;36: 101616.
Article
CAS
Google Scholar
Ito F, Kato K, Yanatori I, Murohara T, Toyokuni S. Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol. 2021;47: 102174.
Article
CAS
Google Scholar
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.
Article
CAS
Google Scholar
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171(2):273–85.
Article
CAS
Google Scholar
Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401–21.
Article
CAS
Google Scholar
Hamazaki S, Okada S, Ebina Y, Midorikawa O. Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol. 1985;77:267–74.
Article
CAS
Google Scholar
Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA. 1994;91:2616–20.
Article
CAS
Google Scholar
Toyokuni S, Luo XP, Tanaka T, Uchida K, Hiai H, Lehotay DC. Induction of a wide range of C2–12 aldehydes and C7–12 acyloins in the kidney of Wistar rats after treatment with a renal carcinogen, ferric nitrilotriacetate. Free Radic Biol Med. 1997;22:1019–27.
Article
CAS
Google Scholar
Kawai Y, Furuhata A, Toyokuni S, Aratani Y, Uchida K. Formation of acrolein-derived 2’-deoxyadenosine adduct in an iron-induced carcinogenesis model. J Biol Chem. 2003;278(50):50346–54.
Article
CAS
Google Scholar
Tanaka T, Kondo S, Iwasa Y, Hiai H, Toyokuni S. Expression of stress-response and cell proliferation genes in renal cell carcinoma induced by oxidative stress. Am J Pathol. 2000;156(6):2149–57.
Article
CAS
Google Scholar
Hiroyasu M, Ozeki M, Kohda H, Echizenya M, Tanaka T, Hiai H, et al. Specific allelic loss of p16 (INK4A) tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis. Am J Pathol. 2002;160(2):419–24.
Article
CAS
Google Scholar
Bollinger JM Jr, Edmondson DE, Huynh BH, Filley J, Norton JR, Stubbe J. Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science. 1991;253(5017):292–8.
Article
CAS
Google Scholar
Cotruvo JA, Stubbe J. Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo. Ann Rev Biochem. 2011;80:733–67.
Article
CAS
Google Scholar
Ito F, Nishiyama T, Shi L, Mori M, Hirayama T, Nagasawa H, et al. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun. 2016;476(4):600–6.
Article
CAS
Google Scholar
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M et al. O2(-) and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell. 2017;31(4):487–500 e488.
Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.
Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68(5):1303–9.
Article
CAS
Google Scholar
Taguchi K, Yamamoto M. The KEAP1-NRF2 System in Cancer. Front Oncol. 2017;7:85.
Article
Google Scholar
Motooka Y, Toyokuni S. Ferroptosis as ultimate target of cancer therapy. Antioxid Redox Signal. 2022. https://doi.org/10.1089/ars.2022.0048.
Article
Google Scholar
Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, et al. The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett. 1995;359(2–3):189–91.
Article
CAS
Google Scholar
Ozeki M, Miyagawa-Hayashino A, Akatsuka S, Shirase T, Lee WH, Uchida K, et al. Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827(1):119–26.
Article
CAS
Google Scholar
Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol. 2021;48: 102175.
Article
CAS
Google Scholar
Van Do B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.
Article
Google Scholar
Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–33.
Article
CAS
Google Scholar
Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019;26(1):14–24.
Article
CAS
Google Scholar
Vogelstein B, Kinzler KW. The genetic basis of human cancer. New York: McGraw-Hill; 1998.
Google Scholar
Toyokuni S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch Biochem Biophys. 2016;595:46–9.
Article
CAS
Google Scholar
Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997;278(5340):1043–50.
Article
CAS
Google Scholar
Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4(9):665–76.
Article
CAS
Google Scholar
Evans DG, Barwell J, Eccles DM, Collins A, Izatt L, Jacobs C, et al. The Angelina Jolie effect: how high celebrity profile can have a major impact on provision of cancer related services. Breast Cancer Res. 2014;16(5):442.
Article
Google Scholar
Momozawa Y, Sasai R, Usui Y, Shiraishi K, Iwasaki Y, Taniyama Y, et al. Expansion of Cancer Risk Profile for BRCA1 and BRCA2 Pathogenic Variants. JAMA Oncol. 2022;8(6):871–8.
Article
Google Scholar
Casella D, Di Taranto G, Marcasciano M, Sordi S, Kothari A, Kovacs T, et al. Nipple-sparing bilateral prophylactic mastectomy and immediate reconstruction with TiLoop((R)) Bra mesh in BRCA1/2 mutation carriers: A prospective study of long-term and patient reported outcomes using the BREAST-Q. Breast. 2018;39:8–13.
Article
CAS
Google Scholar
Metcalfe K, Eisen A, Senter L, Armel S, Bordeleau L, Meschino WS, et al. International trends in the uptake of cancer risk reduction strategies in women with a BRCA1 or BRCA2 mutation. Br J Cancer. 2019;121(1):15–21.
Article
Google Scholar
Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R Jr, et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 2011;71(21):6728–37.
Article
CAS
Google Scholar
Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and Cancer. Annu Rev Nutr. 2018;38:97–125.
Article
CAS
Google Scholar
Yamaguchi K, Mandai M, Toyokuni S, Hamanishi J, Higuchi T, Takakura K, et al. Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res. 2008;14(1):32–40.
Article
CAS
Google Scholar
Kobayashi H, Yamashita Y, Iwase A, Yoshikawa Y, Yasui H, Kawai Y et al. The ferroimmunomodulatory role of ectopic endometriotic stromal cells in ovarian endometriosis. Fertil Steril. 2012;98(2):415–422 e411–412.
Mori M, Ito F, Shi L, Wang Y, Ishida C, Hattori Y, et al. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron. Redox Biol. 2015;6:578–86.
Article
CAS
Google Scholar
Kajiyama H, Suzuki S, Yoshihara M, Tamauchi S, Yoshikawa N, Niimi K, et al. Endometriosis and cancer. Free Radic Biol Med. 2019;133:186–92.
Article
CAS
Google Scholar
Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.
Article
CAS
Google Scholar
Evers B, Jonkers J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene. 2006;25(43):5885–97.
Article
CAS
Google Scholar
Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A. 2007;104(29):12111–6.
Article
CAS
Google Scholar
Nakamura Y, Kubota J, Nishimura Y, Nagata K, Nishimura M, Daino K, et al. Brca 1(L63X) (/+) rat is a novel model of human BRCA1 deficiency displaying susceptibility to radiation-induced mammary cancer. Cancer Sci. 2022;113(10):3362–75.
Article
CAS
Google Scholar
Akatsuka S, Li GH, Toyokuni S. Superiority of rat over murine model for studies on the evolution of cancer genome. Free Radic Res. 2018;52(11–12):1323–7.
Article
CAS
Google Scholar
Okada S, Midorikawa O. Induction of rat renal adenocarcinoma by Fe-nitrilotriacetate (Fe-NTA). Jpn Arch Intern Med. 1982;29:485–91.
CAS
Google Scholar
Kong Y, Akatsuka S, Motooka Y, Zheng H, Cheng Z, Shiraki Y, et al. BRCA1 haploinsufficiency promotes chromosomal amplification under Fenton reaction-based carcinogenesis through ferroptosis-resistance. Redox Biol. 2022;54: 102356.
Article
CAS
Google Scholar
Cheng Z, Akatsuka S, Li GH, Mori K, Takahashi T, Toyokuni S. Ferroptosis resistance determines high susceptibility of murine A/J strain to iron-induced renal carcinogenesis. Cancer Sci. 2022;113(1):65–78.
Article
CAS
Google Scholar
Li GH, Akatsuka S, Chew SH, Jiang L, Nishiyama T, Sakamoto A, et al. Fenton reaction-induced renal carcinogenesis in Mutyh-deficient mice exhibits less chromosomal aberrations than the rat model. Pathol Int. 2017;67(11):564–74.
Article
CAS
Google Scholar
Tanaka T, Iwasa Y, Kondo S, Hiai H, Toyokuni S. High incidence of allelic loss on chromosome 5 and inactivation of p15 INK4B and p16 INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene. 1999;18:3793–7.
Article
CAS
Google Scholar
Inagaki-Kawata Y, Yoshida K, Kawaguchi-Sakita N, Kawashima M, Nishimura T, Senda N, et al. Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants. Commun Biol. 2020;3(1):578.
Article
CAS
Google Scholar
Chen Y, Olopade OI. MYC in breast tumor progression. Expert Rev Anticancer Ther. 2008;8(10):1689–98.
Article
CAS
Google Scholar
Grushko TA, Dignam JJ, Das S, Blackwood AM, Perou CM, Ridderstrale KK, et al. MYC is amplified in BRCA1-associated breast cancers. Clin Cancer Res. 2004;10(2):499–507.
Article
CAS
Google Scholar
Luo Y, Akatsuka S, Motooka Y, Kong Y, Zheng H, Mashimo T, et al. BRCA1 haploinsufficiency impairs iron metabolism to promote chrysotile-induced mesothelioma via ferroptosis-resistance. Cancer Sci. 2022. https://doi.org/10.1111/cas.15705.
Article
Google Scholar