Skip to main content

Mutagenicity of carcinogenic heterocyclic amines in Salmonella typhimurium YG strains and transgenic rodents including gpt delta

Abstract

Chemical carcinogens to humans have been usually identified by epidemiological studies on the relationships between occupational or environmental exposure to the agents and specific cancer induction. In contrast, carcinogenic heterocyclic amines were identified under the principle that mutagens in bacterial in the Ames test are possible human carcinogens. In the 1970s to 1990s, more than 10 heterocyclic amines were isolated from pyrolysates of amino acids, proteins, meat or fish as mutagens in the Ames test, and they were demonstrated as carcinogens in rodents. In the 1980s and 1990s, we have developed derivatives of the Ames tester strains that overexpressed acetyltransferase of Salmonella typhimurium. These strains such as Salmonella typhimurium YG1024 exhibited a high sensitivity to the mutagenicity of the carcinogenic heterocyclic amines. Because of the high sensitivity, YG1024 and other YG strains were used for various purposes, e.g., identification of novel heterocyclic amines, mechanisms of metabolic activation, comparison of mutagenic potencies of various heterocyclic amines, and the co-mutagenic effects. In the 1990s and 2000s, we developed transgenic mice and rats for the detection of mutagenicity of chemicals in vivo. The transgenics were generated by the introduction of reporter genes for mutations into fertilized eggs of mice and rats. We named the transgenics as gpt delta because the gpt gene of Escherichia coli was used for detection of point mutations such as base substitutions and frameshifts and the red/gam genes of λ phage were employed to detect deletion mutations. The transgenic rodents gpt delta and other transgenics with lacI or lacZ as reporter genes have been utilized for characterization of mutagenicity of heterocyclic amines in vivo. In this review, we summarized the in vitro mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains and the in vivo mutagenicity in transgenic rodents. We discussed the relationships between in vitro and in vivo mutagenicity of the heterocyclic amines and their relations to the carcinogenicity.

Background

International Agency for Research on Cancer (IARC) has listed more than 100 agents that are carcinogenic to humans (Group 1) [1]. These carcinogenic agents were identified by epidemiological studies on the relationships between specific cancer induction and occupational or environmental exposure to these agents. For example, o-toluidine has been recognized as a human carcinogen because of the bladder cancer of workers in dye industries [2]. Asbestos has been identified as a human carcinogen because of its strong association with mesothelioma and lung cancer in construction and factory workers [3]. 1,2-Dichloropropane was included in Group 1 agents because of bile duct cancer in employees in the printing industry [4]. Exposure to vinyl chloride monomers induces angiosarcoma in the liver of industrial workers [5]. In this regard, the discovery of carcinogenic heterocyclic amines is unique because they were initially identified as mutagens in bacteria in the Ames test and then demonstrated as carcinogens in rodents [6]. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole (Glu-P-1), 2-aminodipyrido[1,2-a:3’,2’-d]imidazole (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) were isolated from the pyrolysates of amino acids and proteins as potent mutagens in Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella typhimurium) TA98 (Table 1) (Supplementary Fig. 1 and Table 1) [7,8,9]. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were isolated from broiled meat or fish also as potent mutagens in strain TA98 [10,11,12,13,14]. Fortunately, there is no accidental excess exposure to heterocyclic amines in humans. Therefore, the link between the consumption of heterocyclic amines and human cancer is still debatable. However, IQ is ranked as a probable human carcinogen (Group 2A), and others are ranked as possible human carcinogens (Group 2B) by IARC [15]. Therefore, the history of research on carcinogenic heterocyclic amines would provide valuable lessons about the roles of in vitro and in vivo mutagenicity assays in the discovery of human carcinogens. In this review, we have first summarized in vitro mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains that are highly sensitive to the mutagenicity of aromatic amines and nitro aromatics [16]. Second, we have presented the review of in vivo mutagenicity of heterocyclic amines in transgenic rodents such as gpt delta mice/rats, lacI mice/rats and lacZ mice [17, 18]. Finally, we have discussed the effectiveness and limitations of the mutagenicity assays to discover human carcinogens and the cancer risk of heterocyclic amines in daily life.

Table 1 Salmonella typhimurium1 YG strains

Review

Development of Salmonella typhimurium YG strains

In the 1970s, Dr. Bruce N. Ames, University of California, developed a bacterial mutagenicity test (Ames test) and reported that a high percentage of bacterial mutagens in the Ames test are rodent carcinogens [27, 28]. The test is simple, rapid and economical; therefore, large number of environmental chemicals were tested for potential mutagenicity in the Ames tester strains. Typical tester strains of the Ames test are Salmonella typhimurium TA98 and TA100, which detect frameshift-type mutagens and base-substitution-type mutagens, respectively [19, 20]. In the same era, Dr. Takashi Sugimura, National Cancer Center in Japan, was interested in the possibility that smoke from broiled fish might be mutagenic and carcinogenic. Dr. Sugimura and his collaborators examined this possibility using the Ames test and isolated many heterocyclic amines as mutagens from pyrolysates of amino acids, proteins, meat or fish as mutagens [6, 29]. Similarly, Dr. Daisuke Yoshida, the Japan Tobacco & Salt Public Cooperation, isolated AαC and MeAαC from pyrolysis products of soybean globulin and Dr. James S. Felton, Lawrence Livermore National Laboratory, U.S.A., identified PhIP and the related chemicals from fried ground beef [9, 14].

Heterocyclic amines require metabolic activation for mutagenesis and carcinogenesis. In general, they are first oxidized by CYP1A2 to N-hydroxy derivatives, which are further activated by O-acetyltransferase or sulfotransferase to the nitrenium ions, thereby inducing DNA adducts and mutations [30,31,32,33]. In the Ames test, these metabolic enzymes are provided as 9,000 x g supernatant of rat liver homogenates (S9) [34]. It must be pointed out, however, Salmonella typhimurium used in the Ames test has enzymes involved in metabolic activation. In fact, strain TA98/1,8-DNP6 is significantly resistant to the mutagenicity and killing effects of aromatic amines and nitro aromatics, because this strain is devoid of acetyltransferase activity [21].

In the mid-1980s, we were interested in the metabolic activation mechanisms of chemical carcinogens and cloned the oat gene encoding bacterial O-acetyltransferase [16, 22]. For this purpose, we constructed a gene library of Salmonella typhimurium strain TA1538 with a multicopy-number plasmid pBR322 and introduced the gene library into strain TA1538/1,8-DNP, which is the same as TA98/1,8-DNP6 but lacks plasmid pKM101 (Fig. 1). We searched for colonies that could grow on plates without 2-nitrofluorene (2-NF) but could not grow on plates with 2-NF. The principle was that if a plasmid carrying the oat gene was introduced into the host strain TA1538/1,8-DNP, the transformants would not grow on plates with 2-NF but grow on plates without 2-NF because 2-NF requires activities of O-acetyltransferase for cytotoxicity and mutagenicity. Fortunately, we successfully isolated candidate colonies and confirmed that the sensitivity was maintained after the plasmids extracted from the candidate colonies were introduced to the fresh background of TA1538/1,8-DNP. Plasmid pYG121 and pYG122 were the first isolated plasmids that carried the oat gene (Table 1). We then constructed plasmid pYG213, a deletion derivative of pYG122, which contains a 1.35kb-DNA fragment of pYG122 including the oat gene. However, pYG213 has the ampicillin-resistance-gene and is incompatible with strains TA98 and TA100, both of which possess pKM101 that confers ampicillin resistance. Therefore, we subcloned the 1.35-kb DNA fragment into the ScaI site of pBR322 and generated pYG219. Subcloning into this site disrupted the ampicillin-resistance gene and permitted the selection of pYG219 in TA98 and TA100. The resulting strains were named as YG1024 and YG1029, respectively [16]. N-hydroxy-Glu-P-1 O-acetyltransferase activities of TA1538/1,8-DNP harboring pBR322, pYG122, pYG213 or pYG219 were 0, 28.0, 228 or 54.6 nmol/min/mg protein, respectively [16, 23]. Although strain YG1012, which is TA1538/1,8-DNP harboring pYG213, had the highest O-acetyltransferase activity, it exhibited lower sensitivity to the mutagenicity of 1-aminonaphthalene + S9, 1-nitropyrene and 1,8-dinitropyrene compared to YG1024 [23]. It suggests that these chemicals require the presence of pKM101 for maximum frameshift mutagenesis. Plasmid pKM101 carries the mucAB genes encoding DNA polymerase RI, an error-prone DNA polymerase involved in translesion DNA synthesis [35]. Owing to the possession of pKM101 and the wider range of sensitivity, strain YG1024 is more widely used for mutation assays than strain YG1012 [36]. However, YG1024 showed comparable or slightly lower sensitivity to 2-hydroxy-acetylaminofluorene, Glu-P-1 + S9 and 2-aminoanthracene +S9 compared to YG1012 [23]. It appears that these chemicals are not strongly dependent on the presence of pKM101 for maximum mutagenesis. Later, we constructed plasmid pYG233 carrying the oat gene and the cnr gene encoding classical nitroreductase [24] and introduced it to strains TA98 and TA100. The resulting strains YG1041 and YG1042, respectively, overexpressed both acetyltransferase and nitroreductase [26]. They were more sensitive to the mutagenicity of nitroaromatics such as 2-NF, 2,6-dinitrotoluene and 1-nitropyrene than YG1024 or YG1029. A possible problem with YG1041 and YG1042 is the extreme sensitivity to the killing effects of nitro, amino and hydroxyamino compounds. The number of revertants increased very sharply and decreased quickly with increasing doses. In addition, the number of spontaneous revertants per plate of YG1041 and YG1042 was higher than that of spontaneous revertants per plate of YG1024 and YG1029, respectively. The high number of spontaneous revertants obscures the weak mutagenicity of chemicals. Therefore, we recommend using these strains along with other strains such as YG1024 and YG1029 to avoid overlooking the mutagenic responses of test chemicals.

Fig. 1
figure1

Gene cloning of the oat gene encoding O-acetyltransferase in Salmonella typhimurium. The chromosome DNA of Salmonella typhimurium TA1538 was partially digested with Sau3A1 and ligated to BamH1-digested plasmid pBR322, thereby generating a plasmid library of TA1538. Then, the library DNA was introduced into Salmonella typhimurium TA1538/1,8-DNP and screened the colonies that could grow on plates without 2-NF but could not grow on plates with 2-NF

Mutagenicity of heterocyclic amines in YG strains

Novel heterocyclic amines

Heterocyclic amines were initially isolated from the pyrolysates of food or food components. Later, they were isolated from various environmental sources such as river water [37], automobile exhaust particles [38], cigarette smoke [39], human excretion [40] and rainwater [41]. Appropriate devices and methods are required to efficiently collect environmental mutagens. In the case of river water, it is critical to effectively collect and concentrate the target molecules from a large volume of water samples because pollutants are present in only minute concentrations. Sakamoto and Hayatsu developed an effective method, i.e., the blue rayon hanging technique, in which blue rayon covalently bound to the blue pigment copper phthalocyanine is hung in the river to specifically adsorb polycyclic planar compounds including heterocyclic amines [42]. The blue rayon absorbing water pollutants, instead of a large volume of water samples, is transferred to laboratories for chemical analyses and mutagenicity assays. Kataoka et al. [43] isolated and identified IQ, Trp-P-1 and AαC in the Danube River in Vienna by the method. The river water samples exhibited higher mutagenicity in YG1024 than in TA98 in the presence of S9 activation, which suggested a significant contribution of the heterocyclic amines to the whole mutagenicity of the water samples (Table 2). The source of the heterocyclic amines in the Danube River may be the emission and discharge from food processing, e.g., smoke sausage, and wood burning. The collection of mutagens in river water by the blue-rayon hanging technique and the subsequent mutagenicity assays with YG1024 were conducted in samples from the Chao Phraya River in Bangkok, Thailand, and the Sumida and Ara Rivers in Tokyo [44]. Similar methods were employed for samples from rivers in Boston, New York, Washington D.C. and Montreal in North America [45]. In the latter case, YG1041 and YG1024 were much more sensitive than TA98 in the presence of S9 plus an NADPH-generating system (S9 mix).

Table 2 Mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains

Research on mutagens in river water led to the discovery of a novel class of heterocyclic amines. Nukaya et al. employed the blue rayon hanging technique for the collection of samples at sites below sewage plants of the Nishitakase River in Kyoto, Japan, and identified a novel mutagen, i.e., 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) [69]. PBTA-1 was highly mutagenic in YG1024 in the presence of S9 mix, and the mutagenic potency (revertants per μg) was equivalent to that of Glu-P-1. For the reason that there are several dye factories in Kyoto, PBTA-1 is probably produced by the treatment of wastewater from dye factories in the sewage plants. In fact, PBTA-1 can be formed from dinitrophenylazo dye used as an industrial material in textile dyeing by reduction and chlorination [70]. PBTA-1 analogs, i.e., PBTA-2, PBTA-3, PBTA-4, PBTA-5, PBTA-6, PBTA-7 and PBTA-8, were later isolated from rivers in Kyoto and Aichi, Japan [71, 73,74,75, 78]. All these chemicals were mutagenic in YG1024 in the presence of S9 mix and the order of mutagenic potency was PBTA-4 > PBTA-2=PBTA-3 > PBTA-1 > PBTA-5 > PBTA-6 = PBTA-8 > PBTA-7. Despite the potent mutagenicity in the Ames test, the carcinogenicity of PBTAs in rodents has not been reported.

Another novel heterocyclic amine was isolated as a mutagen generated by the Maillard reaction of glucose and amino acids. Nishigaki et al. incubated mixtures of glucose and tryptophan with or without the Fenton reagent and showed that the reaction produced a novel mutagen, i.e., 5-amino-6-hydroxy-8H-benzo[6,7]azepino[5,4,3-de]quinolin-7-one (ABAQ) [67]. This compound was more mutagenic in YG1024 than in TA98 in the presence of S9 mix and the mutagenic potency was comparable to that of PhIP. ABAQ was mutagenic in the liver of gpt delta mice (further detailed provided in the section of “in vivo mutagenicity of heterocyclic amines in transgenic rodents”).

Metabolic activation of heterocyclic amines

Heterocyclic amines require metabolic activation for mutagenesis via CYP enzymes and either O-acetyltransferase or sulfotransferase. As expected, strain YG1024 overexpressing the acetyltransferase exhibited higher sensitivity, i.e., more induced revertants per nmol or μg of chemical, than strain TA98. In fact, YG1024 showed more than 10 times higher sensitivity than TA98 for Glu-P-1, IQ, MeIQ, MeIQx and PBTA-1 [36, 46, 57, 62, 70]. However, YG1024 exhibited similar or only slightly higher sensitivity to PhIP and Trp-P-2 than TA98, suggesting that these heterocyclic amines are not activated by acetyltransferase [46]. Consistent with this, Wu et al. reported that CHO UV-5 cells expressing mouse CYP1A2 and human N-acetyltransferase did not exhibit any significant sensitivity or genotoxicity to PhIP [81]. Wu et al. reported in the next paper that CHO UV5 cells expressing mouse CYP1A2 and human aryl sulfotransferases, i.e., HAST1 or HAST3, exhibited higher sensitivity to the killing effects of PhIP than CHO UV5 cells expressing only mouse CYP1A2 [82]. Thus, N-hydroxy-PhIP may be activated by sulfotransferase rather than acetyltransferase.

Knasmüller et al. examined the comparative mutagenicity of several heterocyclic amines with strain YG1024 and reported that IQ and MeIQ were the most potent mutagens followed by MeIQx and Trp-P-1 and PhIP was the weakest mutagen [51]. This order was basically the same when strain TA98 was used [6]. Part of the reason for the weak mutagenicity of PhIP in strains YG1024 and TA98 may be its low dependency on acetyltransferase for the metabolic activation.

The crystal structure of Salmonella acetyltransferase was determined at 2.8Å resolution, and it was revealed that a Cys-His-Asp catalytic triad is involved in the catalytic mechanism [83]. The critical Cys residue is conserved between the acetyltransferase of Salmonella typhimurium and mammalian acetyltransferases NAT1 and NAT2 [84]. Both acetyltransferases of Salmonella typhimurium and mammals catalyze N-acetylation (usually inactivation) and O-acetylation (usually activation) of heterocyclic amines and the N-hydroxy derivatives [85]. Mammalian NAT1 and NAT2 are polymorphic and epidemiological studies suggest that the polymorphisms modify the risk of developing various cancers such as urinary bladder, colorectal and breast cancers.

In addition to CYP enzymes, prostaglandin-H synthase activates several heterocyclic amines. This enzyme is an arachidonic acid-dependent peroxidase and is suggested to be involved in the metabolic activation of xenobiotics in extrahepatic tissues. Ram seminal vesicle microsomes, a rich source of prostaglandin-H synthase, activate IQ and MeIQ for mutagenesis [53, 56]. The mutagenicity was more sensitively detected in YG strains overexpressing Salmonella acetyltransferase, i.e., YG1006 (TA1538/1,8-DNP with pYG121) and YG1024, than in TA98. The primary mutagenic metabolite of IQ by prostaglandin-H synthase is nitro-IQ, while N-hydroxy derivatives are the active metabolites of IQ and MeIQx by CYP enzymes [25, 33, 56, 62]. Since nitro-IQ and N-hydroxy IQ are further activated by acetyltransferase, the same DNA adduct, i.e., C8-dG-IQ-adduct, is formed in DNA when YG1024 is treated with prostaglandin-H synthase-oxidized IQ or hepatocyte-exposed IQ [58].

Co-mutagenic effects

Humans are exposed to not a single chemical but a variety of chemical agents simultaneously. In this regard, modulating effects of chemicals are important for the risk estimation of environmental mutagens. Nagao et al. reported interesting observations that norharman, which is not mutagenic in the Ames test, becomes mutagenic when incubated with non-mutagenic aromatic amines such as aniline, o-toluidine or m-toluidine in the presence of S9 mix [86]. Later, it was revealed that co-incubation of norharman and aniline with S9 mix produces a novel heterocyclic amine, i.e., 9-(4’-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman, APNH), and the N-hydroxy metabolite, i.e., 9-(4’-hydroxyaminophenyl)-9H-pyrido[3,4-b]indole (hydroxyaminophenylnorharman, N-OH-APNH) [65]. APNH is mutagenic in strains TA98 and YG1024 only when S9 mix is present, while N-OH-APNH is mutagenic without S9 activation. Both chemicals yielded the same DNA adducts in the DNA of YG1024. This strain showed approximately 10 times higher sensitivity to APNH and N-OH-APNH than TA98. The mutagenic potency of APNH was comparable to those of MeIQx and Glu-P-1. Similarly, incubation of norharman and o-toluidine or m-toluidine in the presence of S9 mix generates 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) and 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman), respectively [66]. These results suggest that non-mutagenic chemicals may become mutagenic when combined.

Development of gpt delta transgenic rodents for mutagenicity assays in vivo

In the late 1980s and the early 1990s, two transgenic mouse models were developed with E. coli lacZ or lacI as reporter genes for mutations in vivo [87, 88]. In these mouse models, i.e., Muta Mouse with lacZ and Big Blue Mouse with lacI, the λ phage DNAs with the reporter gene were integrated into the chromosome of all the cells of mice [17]. After the mice are treated with chemical agents, the phage is rescued as phage particles from the mouse genome of various organs and tissues by in vitro packaging reactions. The rescued phages are introduced into indicator E. coli strains to select mutant plaques by color selection, i.e., visual search of colorless plaques in Muta Mouse or blue color plaques in Big Blue Mouse in more than 100,000 background plaques. Transgenic mouse mutagenicity assays allow detection of mutations in any organs or tissues of mice including the liver, lung, bone marrow or testis. However, color selection is time-consuming and expensive because the visual search of plaques of different color is laborious and the chromogenic agent X-gal is expensive. To overcome this limitation, a positive selection with the cII gene of phage λ has been developed [89]. The cII gene encodes a repressor protein that controls the lysogenic and lytic cycle of λ. Mutations in the cII gene can be positively identified with an indicator E. coli strain deficient in Hfl protease. In the hfl- strain, only λ phage with inactive cII can form plaques at 24oC. In contrast, all the rescued λ phage can form plaques at 37oC regardless of the status of cII. Thus, the mutant frequency (MF) can be calculated by dividing the number of plaques formed at 24oC by the number of plaques formed at 37oC and the dilution factor. The coding size of the cII gene is approximately 300 base pairs (bps), which are approximately 1/10 of lacZ and 1/3 of lacI. Thus, DNA sequencing analysis of the mutants is feasible. The cII selection detects point mutations, i.e., base substitutions and frameshifts, but not large deletions. In addition, the cII selection is applicable to both Muta Mouse and Big Blue Mouse. Later, Big Blue Rat was developed with the same λ phage DNA, i.e., λ LIZ DNA, with the lacI and cII genes [90].

In the mid-1990s, we developed another transgenic mouse model named gpt delta by introducing λEG10 DNA into fertilized eggs of C57BL/6J mice [91]. λEG10 DNA was integrated into a single site of the mouse chromosome 17 [92, 93]. A feature of the transgenic mutation assay is the incorporation of two distinct selections for detecting different types of mutations, i.e., gpt selection for point mutations and Spi- selection for deletions (Fig. 2) [17]. The gpt selection uses the gpt gene of E. coli as a reporter gene for mutations. The gpt gene is a bacterial counterpart of the human Hprt gene and encodes guanine phosphoribosyltransferase. When the gpt gene is inactivated by mutations, E. coli cells can survive on the plates containing 6-thioguanine (6-TG), whereas E. coli cells with the wild-type gpt gene cannot survive on the plates because they phosphoribosylate 6-TG to a toxic substance, i.e., 6-TGMP. Thus, the gpt selection is a positive selection. The coding size of the gpt gene is 456 bp, which is convenient for DNA sequencing analysis. The Spi- selection positively detects deletion mutations in λ phage [94]. The selection name Spi- stands for “sensitive to P2 interference”. This selection takes advantage of the restricted growth of the wild-type λ phage in P2 lysogen, which is E. coli cells carrying prophage P2 in the chromosome. Only mutant λ deficient in the functions of both the gam gene and the redBA genes can grow well in P2 lysogens and display the Spi- phenotype. Because the gam gene and the redBA genes are located side by side in the λ genome, inactivation of both functions is most likely to be induced by deletions in the region. Because of the size limitation of the λ phage in in vitro packaging reactions, the size of deletions detectable by the selection is less than 10 kb. However, tandem array of multiple copies of 48-kb λEG10 DNA in the chromosome amounts to a potential target of more than 1 mega bps. Deletion mutations with a molecular size of more than 1 kb were detected by the Spi- selection in various organs such as the liver, spleen, kidney or brain of the mice irradiated with heavy-ions, gamma-rays or X-rays [95,96,97]. Ultraviolet-B irradiation and treatment with mitomycin C also induced large deletions in the epidermis and bone marrow, respectively [98, 99]. The molecular nature of the deletion mutations can be characterized by DNA sequencing of the mutated gam and redBA region [100]. Some of the Spi- large deletions have junctions of two broken ends overlapping with short homologous sequences, while others have flush ends. It suggests that non-homologous end-joining plays an essential role in the induction of deletion mutations. The Spi- selection also detects -1 frameshifts in the gam gene that interfere with the start of translation of the downstream redBA genes [95]. The -1 frameshifts mostly occur in run sequences such as AAAAAA to AAAAA in the gam gene, and this type of mutation accounts for most of the spontaneous Spi- mutations.

Fig. 2
figure2

Protocols of gpt delta transgenic rodent mutation assays. Gpt delta mice or rats are exposed to chemicals by feeding, gavage or others. Then, the genomic DNA is extracted from various organs or tissues to recover λ phage EG10 particles by λ packaging reactions. Then, the rescued phages are introduced to indicator E. coli for gpt selection and for Spi selection that detect point mutations and deletion mutations, respectively. DNA is extracted from 6-TG-resistant colonies or Spi plaques for DNA sequencing

In the early 2000s, Hayashi et al. introduced λEG10 DNA into fertilized eggs of Sprague-Dawley (SD) rats and established SD gpt delta rats [101]. λEG10 DNA was integrated into a single site of the chromosome 4 [93]. The SD gpt delta rats were crossed with Fischer 344 (F344) rats for 15 generations and established F344 gpt delta rats [102]. Unlike gpt delta mice, which have λEG10 DNA in both alleles of chromosome 17, gpt delta rats are heterozygous, where λEG10 is integrated into only one allele of chromosome 4. This is because homozygous rats are defective in tooth development and cannot survive after weaning. To overcome this limitation, a new homozygous gpt delta rat strain was established in the genetic background of Wistar Hannover [103]. In the new version of gpt delta rat, λEG10 was integrated into both alleles of chromosome 1 and exhibited a significantly higher packaging efficiency than the heterozygous gpt delta rats. The average of spontaneous gpt and Spi- MFs in the liver of heterozygous and new homozygous gpt delta rats are 4.4-6.5 x 10-6 and 2.8-5.5 x 10-6, respectively, which are significantly lower than those of the lacI and cII genes [104]. The low frequencies of spontaneous MFs of gpt and Spi- are similar to those of gpt delta mice. Transgenic mouse and rat mutation assays with gpt delta mouse/rat, Big Blue mouse/rat and Muta Mouse are recommended for regulatory genotoxicity assays in vivo in OECD Test Guideline 488 [105]. For the reason that rats are more frequently used for toxicological studies and cancer bioassays than mice, the transgenic rat mutation assays are expected to be combined with 28-day repeated-dose toxicity studies [106].

In vivo mutagenicity of heterocyclic amines in transgenic rodents

Organ specificity and gender difference

PhIP is the most abundant mutagenic and carcinogenic heterocyclic amine produced in cooked meat and fish [14]. It induces colon and prostate cancers in male F344 rats and mammary cancer, but not colon cancer, in female rats [107, 108]. Okonogi et al. [109] examined the mutagenicity of PhIP in the colon of male and female Big Blue rats and concluded that the MFs in the colon mucosa were enhanced by treatment with PhIP, but there were no gender differences in the MFs (Table 3). Masumura et al. [110] examined the organ specificity of PhIP-induced mutations in male and female gpt delta mice and reported that the highest MF was observed in the colon, followed by the spleen and liver. There were no gender differences in the MFs in the colon and liver. Stuart et al. [111] also examined the organ specificity of PhIP in Big Blue rats and reported that the MF in the colon was higher than that in the cecum and also that no gender differences were observed in the MFs in the colon.

Table 3 In vivo mutagenicity of heterocyclic amines in transgenic mice and rats

IQ induces intestinal tumors and hepatocellular carcinoma but not in the kidney of rats [141,142,143]. Bol et al. [127] examined the mutagenicity of IQ in Big Blue rats and reported that the highest MF was observed in the liver, followed by the colon and kidney, a non-target organ. The higher MF in the liver than in the colon induced by IQ was also reported by Moller et al. [128]. MeIQ induces tumors in the Zymbal gland, oral cavity, colon, skin and mammary glands in F344 rats and tumors in the liver and forestomach of CDF1 mice [143]. Suzuki et al. [132] examined the mutagenicity of MeIQ in female Big Blue mice (C57BL/6N) and reported that the highest MF was in the colon, followed by the bone marrow, the liver and the forestomach. MeIQx induces liver tumors in CDF1 mice where the female mice are more susceptible than males, but does not induce tumors in the colon in both sexes [144]. Itoh et al. [135] examined the mutagenicity of MeIQx in Big Blue mice (C57BL/6) and reported that the MF in the liver was higher in female mice than in males. They also observed an increase in MFs in the colon, a non-target organ for carcinogenesis, where no obvious differences in MFs between male and female were observed. Mutagenicity in the colon of mice has also been reported in male gpt delta mice fed a diet containing MeIQx [136]. APNH is formed from aniline and norharman in vitro and in vivo and induces liver and colon cancers in F344 rats [145]. The in vivo mutagenicity of APNH was examined in male gpt delta mice fed a diet containing 10 or 20 ppm of APNH for 12 weeks [139]. The MF was higher in the liver than in the colon, and the MF in the liver of the mice at 20 ppm was almost equivalent to that of the liver in the same mice fed a diet containing 300 ppm MeIQx for 12 weeks [136]. ABAQ is a heterocyclic amine formed from glucose and L-tryptophan via the Maillard reaction. ABAQ has a tumor initiating-activity in the colon of mice [146]. The in vivo mutagenicity of ABAQ was examined in male gpt delta mice treated by gavage for 3 weeks at 25 or 50 mg/kg [140]. The MFs in the liver increased in a dose-dependent manner, and no MF was enhanced by the treatments in the kidney. AαC is the second most abundant heterocyclic amine in very well-done meat and fish [147]. It induces cancers in the liver and blood vessels of CDF1 mice [148]. The in vivo mutagenicity of AαC was examined in F1 (C57BL/6 x SWR) mice with lacI as a reporter gene [112]. AαC enhanced MFs in the colon but not in the small intestine.

Mutation spectrum

Mutagens induce specific types of sequence changes in the genome, such as T to C mutations by ethyl nitrosourea, G to T mutations by benzo[a]pyrene and CC to TT by ultraviolet light irradiation. DNA sequence changes associated with mutagenic treatments are called the “mutation spectrum”. In particular, specific sequence changes in cancer cells are called “mutational signatures,” which are important clues for investigating the causes of human cancer [149, 150]. PhIP induces colon cancer in male F344 rats where the adenomatous polyposis coli (Apc) gene is mutated by a guanine deletion at a 5’-GGGA-3’ [151]. Okonogi et al. [109] examined the mutation spectrum in the colon of Big Blue rats fed a diet containing PhIP and reported that one bp deletion was the most frequent mutation, including a guanine deletion at 5’-GGGA-3’ in male and female rats. Okochi et al. [116] investigated the mutation spectrum of mammary glands in female F1 (Big Blue rat x SD) rats administered 10 gavages of PhIP and concluded that G:C to T:A transversions were the most frequent mutations, followed by G:C deletions including G:C deletions at a 5’-GGGA-3’. Stuart et al. [119] examined the mutation spectrum in the prostate of Big Blue rats fed a diet containing PhIP and concluded that the predominant mutations were G:C to T:A transversions and deletions of G:C bp. In mice, Lynch et al. [114] treated Muta Mouse with PhIP and examined the mutation spectrum in the intestine. Approximately 40% of the total mutations were G:C to T:A transversions and 20% were G:C deletions, which were similar to those observed in the Hprt and DHFR genes in hamster and human cells in vitro. Okonogi et al. [115] examined the mutation spectrum of PhIP in the colon of Big Blue mice and reported that approximately half of the mutations were G:C to T:A transversions, in particular in runs of guanine, and approximately 1/4 of the total mutations were G:C deletions. In the colon, the rate of G:C to T:A transversions is significantly higher in mice than in rats [109]. Masumura et al. [117] treated male gpt delta mice with PhIP and reported that G:C to T:A transversions and G:C deletions in particular in 5’-TTTTTTG-3’ to 5’-TTTTTT-3’ were predominant mutations in the colon detected by gpt and Spi- selections, respectively. Overall, it seems that PhIP induces G:C to T:A transversions and G:C deletions and that the transversions are more frequently induced in mice than in rats.

IQ predominantly induces G:C to T:A transversions in the liver of gpt delta rats and also in the liver and colon of Big Blue rats [127, 130]. G:C to T:A was also induced by MeIQ in the liver, bone marrow and colon of female Big Blue mice [115, 133], APNH in the liver and colon of male gpt delta mice [139] and AαC in the colon of Big Blue mice [115]. Mutational hot spots for G:C to T:A transversions by PhIP, MeIQ and AαC are in runs of guanine, at 5’-GC-3’ and in 5’-CGT-3’, respectively [115].

No-observed effect level (NOEL) of in vivo mutagenesis

Toxicological assays, including in vivo mutagenicity assays of chemicals, are conducted at high doses, i.e., the maximum tolerable doses (MTDs), which are often 1,000 or 10,000 times higher than the human exposure levels in daily life. Therefore, it is unclear whether the toxicity or mutagenicity observed at high doses can also be observed at low doses where humans are actually exposed to the chemical [152]. Lynch et al. [113] examined the mutagenicity of PhIP in Muta mice treated by oral gavage at doses of 0.2, 2 and 20 mg/kg for 4 days and reported that PhIP was mutagenic only at a dose of 20 mg/kg in the large intestine and liver. No mutagenicity was observed in the kidney, even at 20 mg/kg. They suggested that 2 mg/kg may be a potential threshold dose for PhIP-induced mutagenesis. They argued, however, that the dose may be a detection limit instead of a threshold because of the high spontaneous MFs in the liver of Muta mice. Gi et al. [131] examined the mutagenicity of IQ in male F344 gpt delta rats fed diets at doses of 0.1, 1, 10 or 100 ppm for 4 weeks and reported that gpt MFs were significantly enhanced over the control level at doses of 10 and 100 ppm but not at 0.1 and 1 ppm in the liver. They reported, however, that the frequencies of G:C to T:A transversions were significantly enhanced over the control level at a dose of 1 ppm in addition to 10 and 100 ppm and that the increase in the frequencies was dose-dependent. It suggests that DNA sequencing analysis may enhance the sensitivity of mutation detection, thereby lowering the no-observed-effect level (NOEL). Masumura et al. [136] examined the mutagenicity of MeIQx in male gpt delta mice fed diets containing MeIQx at doses of 3, 30 or 300 ppm for 12 weeks. The MFs in the liver significantly increased at doses of 30 and 300 ppm but not at 3 ppm. The frequency of G:C to T:A did not significantly increase at 3 ppm, either. In this case, DNA sequencing analysis did not affect the NOEL. Hoshi et al. [137] examined the mutagenicity of MeIQx in male F344 Big Blue rats fed diets at doses of 0.01, 0.1, 1, 10 or 100 ppm for 16 weeks and reported that the MFs significantly increased at 10 and 100 ppm in the liver. In addition, they examined glutathione S-transferase placental form (GST-P)-positive foci in the liver, which is a marker for hepatocarcinogenesis. The number of GST-P-positive foci significantly increased beyond the number of the control group only at a dose of 100 ppm. They suggested that the NOEL for in vivo mutagenesis was lower than that for carcinogenesis.

Implication of in vitro and in vivo mutation assays

The discovery of carcinogenic heterocyclic amines is one of the most fruitful scientific achievements enabled by the Ames test. Before this test was developed, the identification of chemical carcinogens solely depends on time-consuming animal tests. Multiple validation studies with more than 2,000 chemicals revealed that approximately 70-90% of chemical carcinogens are positive in the Ames test [153]. Therefore, this test is adopted in OECD test guideline 471 [154] and is widely used to eliminate potential carcinogens from pre-marketing chemicals developing for pharmaceuticals, pesticides, food additives and others. Owing to the power of the Ames test, it was initially expected that strong mutagens in the Ames test might be strong carcinogens in rodents. However, studies with a large database indicated that the potency in the Ames test does not quantitatively correlate with that in rodent carcinogenicity assays [155]. The lack of quantitative relationships between mutagenesis in bacteria and carcinogenesis in rodents may not be very surprising when considering the complex process of carcinogenesis such as mutation or initiation, promotion and progression. Since in vivo mutagenesis is much simpler than carcinogenesis, it was expected that the potency of the Ames test might correlate with that in transgenic mutation assays quantitatively. Although the mutagenic potency (revertants per μg) of MeIQ in strain TA98 is more than 300 times higher than that of PhIP [6], the MF of MeIQ in the colon of Big Blue mice fed a diet containing 300 ppm for 90 days is similar to that of PhIP in the mice fed a diet containing 400 ppm for 90 days [156]. It seems, therefore, that the mutagenic potency of the Ames test does not quantitatively correlate with the potency in in vivo mutation assays. It is also pointed out that the potency of the Ames test does not quantitatively correlate with that in in vitro mammalian cell assays for gene mutation and chromosome aberrations [153]. Despite the lack of quantitative correlations, the power of the Ames test to qualitatively predict potential carcinogens is outstanding, as evidenced by the successful discovery of carcinogenic heterocyclic amines.

Transgenic rodent mutation assays have enabled us to analyze chemical-induced mutations in various organs and tissues at the sequence level. Therefore, it would be interesting to examine whether we can predict target organs and sensitive gender for carcinogenesis based on the high MFs in specific organs and gender of rats and mice. Thus, the MFs were compared between the target organs and non-target organs for carcinogenesis, and the gender specificity in mice and rats was examined. However, the MFs in various lobes of the prostate were almost equally sensitive to the mutagenicity of PhIP, while the ventral prostate was the only target for cancer induction in rats [108, 125]. MeIQ induces much higher MF in the colon than in the liver, but the cancer incidence is higher in the liver than in the colon in mice [132, 157]. PhIP induces mutations in the colon of male and female rats, while colon cancer is induced only in males [107,108,109, 111]. MeIQx induces mutations in the colon of male and female mice, but it does not induce tumors in the colon [135, 136, 144]. These results indicate that target organs or tissues for carcinogenesis do not necessarily exhibit higher MFs compared to other organs or tissues, and also that mutations can be induced regardless of the gender specificity for carcinogenesis. In other words, the organs or tissues that are positive in the transgenic mutation assays are not necessarily carcinogenic targets. It appears, however, that tumors are induced in organs where mutations are induced when the carcinogens are genotoxic. Therefore, the transgenic mutation assays are employed to distinguish genotoxic carcinogens from non-genotoxic carcinogens [158]. The results of the transgenic mutation assays reflect in vivo metabolism and mammalian DNA repair, while the results of the Ames test reflect in vitro metabolism of S9 and bacterial DNA repair. Hence, the in vivo mutation assays may be useful to narrow down genotoxic carcinogens from chemicals that are positive in the Ames test. In fact, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) M7 for regulation of mutagenic impurities in pharmaceuticals recommends conducting in vivo mutation assays when the chemical is mutagenic in the Ames test [159]. Research on carcinogenic heterocyclic amines has provided valuable lessons on the effectiveness and limitations of in vivo transgenic mutation assays.

Since carcinogenic heterocyclic amines are produced by cooking, a question is whether they induce cancers in humans. If so, the extent to which they impose cancer risks on the general population? The exposure levels of heterocyclic amines are reported to be less than 500 ng per person per day [6]. In general, genotoxic carcinogens are regulated under the policy that they have no threshold or safe doses [152, 159, 160]. Therefore, there is carcinogenic risk to people who take carcinogenic heterocyclic amines. However, humans have various protective mechanisms against mutagenic substances such as detoxification, DNA repair, error-free translesion synthesis and apoptosis [161]. It is expected, therefore, that low-dose exposure to mutagenic carcinogens may be negligible due to these mechanisms. In addition, people are constantly exposed to endogenous mutagens such as reactive oxygen species. Thus, mutagenic risk is inevitable in humans. European Food Safety Authority (EFSA) and World Health Organization (WHO) propose 150 ng per person per day as a sufficient protective threshold of toxicological concern (TTC) for DNA-reactive genotoxic chemicals [162, 163]. Several studies with transgenic rodents exposed to low levels of carcinogenic heterocyclic amines have suggested the presence of NOEL [113, 131, 136, 137]. Although TTC is a concept that was developed to prioritize chemicals that require further toxicological evaluation and NOEL does not mean the absolute safe level, there may be certain exposure levels for genotoxic carcinogens, which do not increase excess lifetime cancer risk substantially. However, humans are exposed to multiple chemicals. Therefore, the combined risk should be evaluated. It has been reported that six carcinogenic heterocyclic amines, each of whose doses was below non-detectable levels by the Ames test, became mutagenic when they were combined [164]. In addition, chemicals may exhibit co-mutagenic effects and produce mutagenic substances when more than one non-mutagenic substance is combined [165]. Risk assessment of multiple exposures to DNA reactive mutagenic carcinogens at low levels may be a challenge that research on carcinogenic heterocyclic amines has proposed us.

Conclusions

Salmonella typhimurium YG strains help in the discovery of novel carcinogenic heterocyclic amines in complex mixtures such as food and river water by the Ames test because of the high sensitivity to mutagenic aromatic amines and nitroaromatics. Strain YG1024, which overproduces acetyltransferase, exhibited much higher sensitivity than TA98 for Glu-P-1, IQ, MeIQ, MeIQx and PBTA-1 but not for PhIP and Trp-P-2. It suggests that some of the heterocyclic amines are not activated by acetyltransferase. Transgenic rodent in vivo mutation assays are useful to analyze mutations in any organs of mice and rats at the sequence level. Heterocyclic amines induced tumors in the organs where mutations are induced. However, not all the organs where mutations are induced are target organs for carcinogenesis and the target organs for carcinogenesis are not necessarily organs where the highest MFs are observed. Research on carcinogenic heterocyclic amines provided valuable insights into the effectiveness and the limitation of in vitro and in vivo mutation assays for the identification of human carcinogens.

Availability of data and materials

Not applicable.

Abbreviations

IARC:

International Agency for Research on Cancer

Trp-P-1:

3-amino-1,4-dimethyl-5H-pyrido [4,3-b]indole

Trp-P-2:

3-amino-1-methyl-5H-pyrido [4,3-b]indole

Glu-P-1:

2-amino-6-methyldipyrido [1,2-a,3′,2′-d]imidazole

Glu-P-2:

2-aminodipyrido [1,2-a:3′,2′-d]imidazole

AαC:

2-amino-9H-pyrido [2,3-b]indole

MeAαC:

2-amino-3-methyl-9H-pyrido [2,3-b]indole

Salmonella typhimurium :

Salmonella enterica subsp. enterica serovar Typhimurium

IQ:

2-Amino-3-methylimidazo [4,5-f]quinoline

MeIQ:

2-amino-3,4-dimethylimidazo [4,5-f]quinoline

MeIQx:

2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline

PhIP:

2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine

S9:

9000 x g supernatant of rat liver homogenates

S9 mix:

S9 plus an NADPH-generating system

PBTA-1:

2-[2-(acetylamino)-4-[bis (2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole

ABAQ:

5-amino-6-hydroxy-8H-benzo [1, 2] azepino [5,4,3-de]quinolin-7-one

APNH or aminophenylnorharman:

9-(4′-aminophenyl)-9H-pyrido [3,4-b]indole

N-OH-APNH or hydroxyaminophenylnorharman:

9-(4′-hydroxyaminophenyl)-9H-pyrido [3,4-b]indole

amino-3′-methylphenylnorharman:

9-(4′-amino-3′-methylphenyl)-9H-pyrido [3,4-b]indole

amino-2′-methylphenylnorharman:

9-(4′-amino-2′-methylphenyl)-9H-pyrido [3,4-b]indole

MF:

mutant frequency

bps:

base pairs

6-TG:

6-thioguanine

SD:

Sprague Dawley

F344:

Fischer 344

Apc :

adenomatous polyposis coli

MTD:

maximum tolerable dose

NOEL:

no-observed effect level

GST-P:

glutathione S-transferase placental form

ICH:

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use

EFSA:

European Food Safety Authority

WHO:

World Health Organization

TTC:

threshold of toxicological concern

References

  1. 1.

    IARC. IARC monographs on the identification of carcinogenic hazards to humans. Lyon: WHO Press. Available from: https://monographs.iarc.who.int/agents-classified-by-the-iarc/

  2. 2.

    IARC. o-toluidine. Chemical agents and related occupations. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. 100F. Lyon: WHO Press; 2012. p. 93–100.

    Google Scholar 

  3. 3.

    IARC. Asbestos. Arsenic, fibre, metal and dusts, a review of human carcinogens. IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. 100C. Lyon: WHO Press; 2012. p. 219–310.

    Google Scholar 

  4. 4.

    IARC. 1,2-dichloropropane. Some chemicals used as solvents and in polymer manufacture. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 110: WHO Press; 2017. p. 141–76.

    Google Scholar 

  5. 5.

    IARC. vinyl chloride. Chemical agents and related occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 100F. Lyon: WHO Press; 2012. p. 451–78.

    Google Scholar 

  6. 6.

    Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004;95(4):290–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Sugimura T, Kawachi T, Nagao M, Yahagi T, Seino Y, Okamoto T, et al. Mutagenic principle(s) in tryptophan and phenylalanine pyrolysis products. Proc Jpn Acad. 1977;53:58–61.

    CAS  Article  Google Scholar 

  8. 8.

    Yamamoto T, Tsuji K, Kosuge T, Okamoto T, Shudo K, Takeda K, et al. Isolation and strucuture determination of mutagenic substances in L-glutamic acid pyrolysate. Proc Jpn Acad. 1978;54B.

  9. 9.

    Yoshida D, Matsumoto T, Yoshimura R, Matsuzaki T. Mutagenicity of amino-α-carbolines in pyrolysis products of soybean globulin. Biochem Biophys Res Commun. 1978;83(3):915–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Wakabayashi K, Nagao M, Esumi H, Sugimura T. Food-derived mutagens and carcinogens. Cancer Res. 1992;52(7 Suppl):2092s–8s.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kasai H, Yamaizumi Z, Wakabayashi K, Nagao M, Sugimura T, Yokoyama S, et al. Potent novel mutagens produced by broiling fish under normal conditions. Proc Jpn Acad. 1980;56B:278–83.

    Article  Google Scholar 

  12. 12.

    Kasai H, Yamaizumi Z, Wakabayashi K, Nagao M, Sugimura T, Yokoyama S, et al. Structure and chemical synthesis of MeIQ, a potent mutagen isolated from broiled fish. Chem Lett. 1980:1391–4.

  13. 13.

    Kasai H, Yamaizumi Z, Shiomi T, Yokoyama S, Miyazawa T, Wakabayashi K, et al. Structure of a potent mutagen isolated from fried beef. Chem Lett. 1981:485–8.

  14. 14.

    Felton JS, Knize MG, Shen NH, Lewis PR, Andresen BD, Happe J, et al. The isolation and identification of a new mutagen from fried ground beef: 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). Carcinogenesis. 1986;7(7):1081–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    IARC. Heterocyclic amines. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins IARC Monograph on the Evaluation of Carcinogenic Risks to Humans 56. Lyon: WHO Press; 1992. p. 163–242.

    Google Scholar 

  16. 16.

    Watanabe M, Ishidate M Jr, Nohmi T. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: new derivatives of Salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Mutat Res. 1990;234(5):337–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Nohmi T, Suzuki T, Masumura K. Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res. 2000;455(1–2):191–215.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ. 2017;39:11.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    McCann J, Spingarn NE, Kobori J, Ames BN. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci U S A. 1975;72(3):979–83 https://doi.org/10.1073/pnas.72.3.979.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113(3–4):173–215.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    McCoy EC, Anders M, Rosenkranz HS. The basis of the insensitivity of Salmonella typhimurium strain TA98/1,8-DNP6 to the mutagenic action of nitroarenes. Mutat Res. 1983;121(1):17–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Watanabe M, Nohmi T, Ishidate M Jr. New tester strains of Salmonella typhimurium highly sensitive to mutagenic nitroarenes. Biochem Biophys Res Commun. 1987;147(3):974–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Watanabe M, Sofuni T, Nohmi T. Comparison of the sensitivity of Salmonella typhimurium strains YG1024 and YG1012 for detecting the mutagenicity of aromatic amines and nitroarenes. Mutat Res. 1993;301(1):7–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Watanabe M, Ishidate M Jr, Nohmi T. A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res. 1989;216(4):211–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Morrison LD, Eling TE, Josephy PD. Prostaglandin H synthase-dependent formation of the direct-acting mutagen 2-nitro-3-methylimidazo [4,5-f] quinoline (nitro-IQ) from IQ. Mutat Res. 1993;302(1):45–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T. Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res. 1993;291(3):171–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    McCann J, Choi E, Yamasaki E, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A. 1975;72(12):5135–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975;31(6):347–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Sugimura T. Studies on environmental chemical carcinogenesis in Japan. Science. 1986;233(4761):312–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Turesky RJ, Constable A, Fay LB, Guengerich FP. Interspecies differences in metabolism of heterocyclic aromatic amines by rat and human P450 1A2. Cancer Lett. 1999;143(2):109–12 https://doi.org/10.1016/S0304-3835(99)00137-8.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Minchin RF, Reeves PT, Teitel CH, McManus ME, Mojarrabi B, Ilett KF, et al. N-and O-acetylation of aromatic and heterocyclic amine carcinogens by human monomorphic and polymorphic acetyltransferases expressed in COS-1 cells. Biochem Biophys Res Commun. 1992;185(3):839–44.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Muckel E, Frandsen H, Glatt HR. Heterologous expression of human N-acetyltransferases 1 and 2 and sulfotransferase 1A1 in Salmonella typhimurium for mutagenicity testing of heterocyclic amines. Food Chem Toxicol. 2002;40(8):1063–8.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Yamazoe Y, Shimada M, Kamataki T, Kato R. Microsomal activation of 2-amino-3-methylimidazo [4,5-f] quinoline, a pyrolysate of sardine and beef extracts, to a mutagenic intermediate. Cancer Res. 1983;43(12 Pt 1):5768–74.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A. 1973;70(8):2281–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Goldsmith M, Sarov-Blat L, Livneh Z. Plasmid-encoded MucB protein is a DNA polymerase (pol RI) specialized for lesion bypass in the presence of MucA', RecA, and SSB. Proc Natl Acad Sci U S A. 2000;97(21):11227–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Einistö P, Watanabe M, Ishidate M Jr, Nohmi T. Mutagenicity of 30 chemicals in Salmonella typhimurium strains possessing different nitroreductase or O-acetyltransferase activities. Mutat Res. 1991;259(1):95–102.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: a review. Mutat Res. 2004;567(2–3):109–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Manabe S, Kurihara N, Wada O, Izumikawa S, Asakuno K, Morita M. Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine, in airborne particles and diesel-exhaust particles. Environ Pollut. 1993;80(3):281–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Yamashita M, Wakabayashi K, Nagao M, Sato S, Yamaizumi Z, Takahashi M, et al. Detection of 2-amino-3-methylimidazo [4,5-f] quinoline in cigarette smoke condensate. Jpn J Cancer Res. 1986;77(5):419–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ushiyama H, Wakabayashi K, Hirose M, Itoh H, Sugimura T, Nagao M. Presence of carcinogenic heterocyclic amines in urine of healthy volunteers eating normal diet, but not of inpatients receiving parenteral alimentation. Carcinogenesis. 1991;12(8):1417–22.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Manabe S, Uchino E, Wada O. Carcinogenic tryptophan pyrolysis products in airborne particles and rain water. Mutat Res. 1989;226(4):215–21.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Sakamoto H, Hayatsu H. A simple method for monitoring mutagenicity of river water. Mutagens in Yodo river system, Kyoto-Osaka. Bull Environ Contam Toxicol. 1990;44(4):521–8.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kataoka H, Hayatsu T, Hietsch G, Steinkellner H, Nishioka S, Narimatsu S, et al. Identification of mutagenic heterocyclic amines (IQ, Trp-P-1 and AαC) in the water of the Danube River. Mutat Res. 2000;466(1):27–35.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Kusamran WR, Wakabayashi K, Oguri A, Tepsuwan A, Nagao M, Sugimura T. Mutagenicities of Bangkok and Tokyo river waters. Mutat Res. 1994;325(2–3):99–104.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ohe T, White PA, DeMarini DM. Mutagenic characteristics of river waters flowing through large metropolitan areas in North America. Mutat Res. 2003;534(1–2):101–12.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Wild D, Watkins BE, Vanderlaan M. Azido- and nitro-PhIP, relatives of the heterocyclic arylamine and food mutagen PhIP--mechanism of their mutagenicity in Salmonella. Carcinogenesis. 1991;12(6):1091–6.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Turesky RJ, Goodenough AK, Ni W, McNaughton L, LeMaster DM, Holland RD, et al. Identification of 2-amino-1,7-dimethylimidazo [4,5-g]quinoxaline: an abundant mutagenic heterocyclic aromatic amine formed in cooked beef. Chem Res Toxicol. 2007;20(3):520–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Wagner ED, Marengo MS, Plewa MJ. Modulation of the mutagenicity of heterocyclic amines by organophosphate insecticides and their metabolites. Mutat Res. 2003;536(1–2):103–15.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Malfatti MA, Connors MS, Mauthe RJ, Felton JS. The capability of rat colon tissue slices to metabolize the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Cancer Res. 1996;56(11):2550–5.

    CAS  PubMed  Google Scholar 

  50. 50.

    Pfau W, Martin FL, Cole KJ, Venitt S, Phillips DH, Grover PL, et al. Heterocyclic aromatic amines induce DNA strand breaks and cell transformation. Carcinogenesis. 1999;20(4):545–51.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Knasmüller S, Schwab CE, Land SJ, Wang CY, Sanyal R, Kundi M, et al. Genotoxic effects of heterocyclic aromatic amines in human derived hepatoma (HepG2) cells. Mutagenesis. 1999;14(6):533–40.

    PubMed  Article  Google Scholar 

  52. 52.

    Lake RS, Gaworski CL, Crouse EW, Heck JD. Phenotypic instability of Salmonella strain YG1024 during mutagenicity assays of arylamine promutagens. Mutat Res. 1993;301(3):157–63.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Petry TW, Josephy PD, Pagano DA, Zeiger E, Knecht KT, Eling TE. Prostaglandin hydroperoxidase-dependent activation of heterocyclic aromatic amines. Carcinogenesis. 1989;10(12):2201–7.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    De Flora S, Bagnasco M, Bennicelli C, Camoirano A, Bojnemirski A, Kurelec B. Biotransformation of genotoxic agents in marine sponges. Mech Modulation Mutagen. 1995;10(4):357–64.

    Article  Google Scholar 

  55. 55.

    Anari MR, Josephy PD, Henry T, O'Brien PJ. Hydrogen peroxide supports human and rat cytochrome P450 1A2-catalyzed 2-amino-3-methylimidazo [4,5-f] quinoline bioactivation to mutagenic metabolites: significance of cytochrome P450 peroxygenase. Chem Res Toxicol. 1997;10(5):582–8.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Wolz E, Wild D, Degen GH. Prostaglandin-H synthase mediated metabolism and mutagenic activation of 2-amino-3-methylimidazo [4,5-f] quinoline (IQ). Arch Toxicol. 1995;69(3):171–9.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Wild D. Improved microbiological assay of heterocyclic aromatic amines in cooked food. Z Ernahrungswiss. 1995;34(1):22–6.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Wolz E, Pfau W, Degen GH. Bioactivation of the food mutagen 2-amino-3-methyl-imidazo [4, 5-f] quinoline (IQ) by prostaglandin-H synthase and by monooxygenases: DNA adduct analysis. Food Chem Toxicol. 2000;38(6):513–22.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Yoxall V, Wilson J, Ioannides C. An improved method for the extraction of mutagens from human urine and cooked meat using blue rayon. Mutat Res. 2004;559(1–2):121–30.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Vikse R, Hatch FT, Winter NW, Knize MG, Grivas S, Felton JS. Structure-mutagenicity relationships of four amino-imidazonaphthyridines and imidazoquinolines. Environ Mol Mutagen. 1995;26(1):79–85.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Malaveille C, Fiorini L, Bianchini M, Davico L, Bertinetti S, Allegro G, et al. Randomized controlled trial of dietary intervention: association between level of urinary phenolics and anti-mutagenicity. Mutat Res. 2004;561(1–2):83–90.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Rich KJ, Murray BP, Lewis I, Rendell NB, Davies DS, Gooderham NJ, et al. N-hydroxy-MeIQx is the major microsomal oxidation product of the dietary carcinogen MeIQx with human liver. Carcinogenesis. 1992;13(12):2221–6.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Kim IS, Wakabayashi K, Kurosaka R, Yamaizumi Z, Jinno F, Koyota S, et al. Isolation and identification of a new mutagen, 2-amino-4-hydroxy-methyl-3,8-dimethylimidazo [4,5-f] quinoxaline (4-CH2OH-8-MeIQx), from beef extract. Carcinogenesis. 1994;15(1):21–6.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Nukaya H, Koyota S, Jinno F, Ishida H, Wakabayashi K, Kurosaka R, et al. Structural determination of a new mutagenic heterocyclic amine, 2-amino-1,7,9-trimethylimidazo [4,5-g] quinoxaline (7,9-DiMeIgQx), present in beef extract. Carcinogenesis. 1994;15(6):1151–4.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Totsuka Y, Hada N, Matsumoto K, Kawahara N, Murakami Y, Yokoyama Y, et al. Structural determination of a mutagenic aminophenylnorharman produced by the co-mutagen norharman with aniline. Carcinogenesis. 1998;19(11):1995–2000.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Hada N, Totsuka Y, Enya T, Tsurumaki K, Nakazawa M, Kawahara N, et al. Structures of mutagens produced by the co-mutagen norharman with o- and m-toluidine isomers. Mutat Res. 2001;493(1–2):115–26.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Nishigaki R, Watanabe T, Kajimoto T, Tada A, Takamura-Enya T, Enomoto S, et al. Isolation and identification of a novel aromatic amine mutagen produced by the Maillard reaction. Chem Res Toxicol. 2009;22(9):1588–93.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Pfau W, Schulze C, Shirai T, Hasegawa R, Brockstedt U. Identification of the major hepatic DNA adduct formed by the food mutagen 2-amino-9H-pyrido [2,3-b] indole (AαC). Chem Res Toxicol. 1997;10(10):1192–7.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, et al. Isolation and chemical-structural determination of a novel aromatic amine mutagen in water from the Nishitakase River in Kyoto. Chem Res Toxicol. 1997;10(10):1061–6.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Shiozawa T, Muraoka K, Nukaya H, Ohe T, Sawanishi H, Oguri A, et al. Chemical synthesis of a novel aromatic amine mutagen isolated from water of the Nishitakase River in Kyoto and a possible route of its formation. Chem Res Toxicol. 1998;11(4):375–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Oguri A, Shiozawa T, Terao Y, Nukaya H, Yamashita J, Ohe T, et al. Identification of a 2-phenylbenzotriazole (PBTA)-type mutagen, PBTA-2, in water from the Nishitakase River in Kyoto. Chem Res Toxicol. 1998;11(10):1195–200.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Ohe T, Takeuchi N, Watanabe T, Tada A, Nukaya H, Terao Y, et al. Quantification of two aromatic amine mutagens, PBTA-1 and PBTA-2, in the Yodo River system. Environ Health Perspect. 1999;107(9):701–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Shiozawa T, Tada A, Nukaya H, Watanabe T, Takahashi Y, Asanoma M, et al. Isolation and identification of a new 2-phenylbenzotriazole-type mutagen (PBTA-3) in the Nikko river in Aichi, Japan. Chem Res Toxicol. 2000;13(7):535–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Nukaya H, Shiozawa T, Tada A, Terao Y, Ohe T, Watanabe T, et al. Identification of 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotria zole (PBTA-4) as a potent mutagen in river water in Kyoto and Aichi prefectures, Japan. Mutat Res. 2001;492(1–2):73–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Watanabe T, Nukaya H, Terao Y, Takahashi Y, Tada A, Takamura T, et al. Synthesis of 2-phenylbenzotriazole-type mutagens, PBTA-5 and PBTA-6, and their detection in river water from Japan. Mutat Res. 2001;498(1–2):107–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Watanabe T, Takahashi Y, Takahashi T, Nukaya H, Terao Y, Hirayama T, et al. Seasonal fluctuation of the mutagenicity of river water in Fukui, Japan, and the contribution of 2-phenylbenzotriazole-type mutagens. Mutat Res. 2002;519(1–2):187–97 https://doi.org/10.1016/S1383-5718(02)00139-0.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Morisawa T, Mizuno T, Ohe T, Watanabe T, Hirayama T, Nukaya H, et al. Levels and behavior of 2-phenylbenzotoriazole-type mutagens in the effluent of a sewage treatment plant. Mutat Res. 2003;534(1–2):123–32.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Watanabe T, Shiozawa T, Takahashi Y, Takahashi T, Terao Y, Nukaya H, et al. Mutagenicity of two 2-phenylbenzotriazole derivatives, 2-[2-(acetylamino)-4-(diethylamino)-5-methoxyphenyl]-5-amino- 7-bromo-4-chloro-2H-benzotriazole and 2-[2-(acetylamino)-4-(diallylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H- benzotriazole and their detection in river water in Japan. Mutagenesis. 2002;17(4):293–9.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Ohe T, Mizuno T, Morisawa T, Kiritani S, Suzuki S, Takehana H, et al. Mutagenicity and levels of 2-phenylbenzotriazole (PBTA)-type mutagens in sewage effluent, riber water, sediment and drinking water collected from the Yodo River system, Japan. Genes Environ. 2006;28(3):108–19.

    CAS  Article  Google Scholar 

  80. 80.

    Watanabe T, Ohba H, Asanoma M, Hasei T, Takamura T, Terao Y, et al. Isolation and identification of non-chlorinated phenylbenzotriazole (non-ClPBTA)-type mutagens in the Ho River in Shizuoka prefecture, Japan. Mutat Res. 2006;609(2):137–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Wu RW, Tucker JD, Sorensen KJ, Thompson LH, Felton JS. Differential effect of acetyltransferase expression on the genotoxicity of heterocyclic amines in CHO cells. Mutat Res. 1997;390(1–2):93–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Wu RW, Panteleakos FN, Kadkhodayan S, Bolton-Grob R, McManus ME, Felton JS. Genetically modified Chinese hamster ovary cells for investigating sulfotransferase-mediated cytotoxicity and mutation by 2-amino-1-methyl-6- phenylimidazo [4,5-b]pyridine. Environ Mol Mutagen. 2000;35(1):57–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Sinclair JC, Sandy J, Delgoda R, Sim E, Noble ME. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol. 2000;7(7):560–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Watanabe M, Sofuni T, Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem. 1992;267(12):8429–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000;9(1):29–42.

    CAS  Google Scholar 

  86. 86.

    Nagao M, Yahagi T, Sugimura T. Differences in effects of norharman with various classes of chemical mutagens and amounts of S-9. Biochem Biophys Res Commun. 1978;83(2):373–8 https://doi.org/10.1016/0006-291X(78)91000-8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Gossen JA, de Leeuw WJ, Tan CH, Zwarthoff EC, Berends F, Lohman PH, et al. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A. 1989;86(20):7971–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Kohler SW, Provost GS, Kretz PL, Fieck A, Sorge JA, Short JM. The use of transgenic mice for short-term, in vivo mutagenicity testing. Genet Anal Tech Appl. 1990;7(8):212–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Jakubczak JL, Merlino G, French JE, Muller WJ, Paul B, Adhya S, et al. Analysis of genetic instability during mammary tumor progression using a novel selection-based assay for in vivo mutations in a bacteriophage lambda transgene target. Proc Natl Acad Sci U S A. 1996;93(17):9073–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Dycaico MJ, Provost GS, Kretz PL, Ransom SL, Moores JC, Short JM. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat Res. 1994;307(2):461–78.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M, et al. A new transgenic mouse mutagenesis test system using Spi and 6-thioguanine selections. Environ Mol Mutagen. 1996;28(4):465–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Masumura K, Matsui M, Katoh M, Horiya N, Ueda O, Tanabe H, et al. Spectra of gpt mutations in ethylnitrosourea-treated and untreated transgenic mice. Environ Mol Mutagen. 1999;34(1):1–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Masumura K, Sakamoto Y, Kumita W, Honma M, Nishikawa A, Nohmi T. Genomic integration of lambda EG10 transgene in gpt delta transgenic rodents. Genes Environ. 2015;37:24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Ikeda H, Shimizu H, Ukita T, Kumagai M. A novel assay for illegitimate recombination in Escherichia coli: stimulation of lambda bio transducing phage formation by ultra-violet light and its independence from RecA function. Adv Biophys. 1995;31:197–208.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Nohmi T, Suzuki M, Masumura K, Yamada M, Matsui K, Ueda O, et al. Spi selection: an efficient method to detect gamma-ray-induced deletions in transgenic mice. Environ Mol Mutagen. 1999;34(1):9–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Masumura K, Kuniya K, Kurobe T, Fukuoka M, Yatagai F, Nohmi T. Heavy-ion-induced mutations in the gpt delta transgenic mouse: comparison of mutation spectra induced by heavy-ion, X-ray, and gamma-ray radiation. Environ Mol Mutagen. 2002;40(3):207–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Masumura K, Yatagai F, Ochiai M, Nakagama H, Nohmi T. Effects of the scid mutation on X-ray-induced deletions in the brain and spleen of gpt delta mice. Genes Environ. 2020;42:19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Horiguchi M, Masumura KI, Ikehata H, Ono T, Kanke Y, Nohmi T. Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. Cancer Res. 2001;61(10):3913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Takeiri A, Mishima M, Tanaka K, Shioda A, Ueda O, Suzuki H, et al. Molecular characterization of mitomycin C-induced large deletions and tandem-base substitutions in the bone marrow of gpt delta transgenic mice. Chem Res Toxicol. 2003;16(2):171–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Nohmi T, Masumura K. Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens. Environ Mol Mutagen. 2005;45(2–3):150–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Hayashi H, Kondo H, Masumura K, Shindo Y, Nohmi T. Novel transgenic rat for in vivo genotoxicity assays using 6-thioguanine and Spi selection. Environ Mol Mutagen. 2003;41(4):253–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Toyoda-Hokaiwado N, Inoue T, Masumura K, Hayashi H, Kawamura Y, Kurata Y, et al. Integration of in vivo genotoxicity and short-term carcinogenicity assays using F344 gpt delta transgenic rats: in vivo mutagenicity of 2,4-diaminotoluene and 2,6-diaminotoluene structural isomers. Toxicol Sci. 2010;114(1):71–8 https://doi.org/10.1093/toxsci/kfp306.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Masumura K, Ando T, Ukai A, Fujiwara S, Yokose S, You X, et al. New homologous gpt delta transgenic rat strain improves in vivo mutagenicity assay efficiency. Genes Environ. 2021;43(1):25 https://doi.org/10.1186/s41021-021-00195-1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Masumura K. Spontaneous and induced gpt and Spi mutant frequencies in gpt delta transgenic rodents. Genes Environ. 2009;31(4):105–18.

    CAS  Article  Google Scholar 

  105. 105.

    OECD. Test no. 488: transgenic rodent somatic and germ cell gene mutation assays. Paris: OECD Publishing; 2020.

    Book  Google Scholar 

  106. 106.

    Hori H, Shimoyoshi S, Tanaka Y, Momonami A, Masumura K, Yamada M, et al. Integration of micronucleus tests with a gene mutation assay in F344 gpt delta transgenic rats using benzo [a]pyrene. Mutat Res Genet Toxicol Environ Mutagen. 2019;837:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, et al. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). Carcinogenesis. 1991;12(8):1503–6 https://doi.org/10.1093/carcin/12.8.1503.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, et al. The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) derived from cooked foods. Cancer Res. 1997;57(2):195–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Okonogi H, Stuart GR, Okochi E, Ushijima T, Sugimura T, Glickman BW, et al. Effects of gender and species on spectra of mutation induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine in the lacI transgene. Mutat Res. 1997;395(2–3):93–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Masumura K, Matsui K, Yamada M, Horiguchi M, Ishida K, Watanabe M, et al. Mutagenicity of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) in the new gpt delta transgenic mouse. Cancer Lett. 1999;143(2):241–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Stuart GR, de Boer JG, Haesevoets R, Holcroft J, Kangas J, Sojonky K, et al. Mutations induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) in cecum and proximal and distal colon of lacI transgenic rats. Mutagenesis. 2001;16(5):431–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Zhang XB, Felton JS, Tucker JD, Urlando C, Heddle JA. Intestinal mutagenicity of two carcinogenic food mutagens in transgenic mice: 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and amino(α)carboline. Carcinogenesis. 1996;17(10):2259–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Lynch AM, Gooderham NJ, Boobis AR. Organ distinctive mutagenicity in MutaMouse after short-term exposure to PhIP. Mutagenesis. 1996;11(5):505–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Lynch AM, Gooderham NJ, Davies DS, Boobis AR. Genetic analysis of PhIP intestinal mutations in MutaMouse. Mutagenesis. 1998;13(6):601–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Okonogi H, Ushijima T, Zhang XB, Heddle JA, Suzuki T, Sofuni T, et al. Agreement of mutational characteristics of heterocyclic amines in lacI of the big blue mouse with those in tumor related genes in rodents. Carcinogenesis. 1997;18(4):745–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Okochi E, Watanabe N, Shimada Y, Takahashi S, Wakazono K, Shirai T, et al. Preferential induction of guanine deletion at 5′-GGGA-3′ in rat mammary glands by 2-amino- 1-methyl-6-phenylimidazo [4,5-b]pyridine. Carcinogenesis. 1999;20(10):1933–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Masumura K, Matsui K, Yamada M, Horiguchi M, Ishida K, Watanabe M, et al. Characterization of mutations induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine in the colon of gpt delta transgenic mouse: novel G:C deletions beside runs of identical bases. Carcinogenesis. 2000;21(11):2049–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Stuart GR, Thorleifson E, Okochi E, de Boer JG, Ushijima T, Nagao M, et al. Interpretation of mutational spectra from different genes: analyses of PhIP-induced mutational specificity in the lacI and cII transgenes from colon of big blue rats. Mutat Res. 2000;452(1):101–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Stuart GR, Holcroft J, de Boer JG, Glickman BW. Prostate mutations in rats induced by the suspected human carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Cancer Res. 2000;60(2):266–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Yang H, Stuart GR, Glickman BW, de Boer JG. Modulation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine-induced mutation in the cecum and colon of big blue rats by conjugated linoleic acid and 1,2-dithiole-3-thione. Nutr Cancer. 2001;39(2):259–66 https://doi.org/10.1207/S15327914nc392_16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Yang H, Glickman BW, de Boer JG. Effect of conjugated linoleic acid on the formation of spontaneous and PhIP-induced mutation in the colon and cecum of rats. Mutat Res. 2002;500(1–2):157–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Yang H, Glickman BW, de Boer JG. Sex-specific induction of mutations by PhIP in the kidney of male and female rats and its modulation by conjugated linoleic acid. Environ Mol Mutagen. 2002;40(2):116–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Shan L, Yu M, Schut HA, Snyderwine EG. Susceptibility of rats to mammary gland carcinogenesis by the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) varies with age and is associated with the induction of differential gene expression. Am J Pathol. 2004;165(1):191–202.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Cooney GT, Holcroft J, de Boer JG. The effect of dietary restriction on PhIP-induced mutation in the distal colon and B [a]P- and ENU-induced mutation in the liver of the rat. Nutr Cancer. 2004;50(1):63–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67(3):1378–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Davis CD, Dacquel EJ, Schut HA, Thorgeirsson SS, Snyderwine EG. In vivo mutagenicity and DNA adduct levels of heterocyclic amines in Muta mice and c-myc/lacZ double transgenic mice. Mutat Res. 1996;356(2):287–96.

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Bol SA, Horlbeck J, Markovic J, de Boer JG, Turesky RJ, Constable A. Mutational analysis of the liver, colon and kidney of big blue rats treated with 2-amino-3-methylimidazo [4,5-f]quinoline. Carcinogenesis. 2000;21(1):1–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Moller P, Wallin H, Vogel U, Autrup H, Risom L, Hald MT, et al. Mutagenicity of 2-amino-3-methylimidazo [4,5-f] quinoline in colon and liver of big blue rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress. Carcinogenesis. 2002;23(8):1379–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Hansen M, Hald MT, Autrup H, Vogel U, Bornholdt J, Moller P, et al. Sucrose and IQ induced mutations in rat colon by independent mechanism. Mutat Res. 2004;554(1–2):279–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Kanki K, Nishikawa A, Masumura K, Umemura T, Imazawa T, Kitamura Y, et al. In vivo mutational analysis of liver DNA in gpt delta transgenic rats treated with the hepatocarcinogens N-nitrosopyrrolidine, 2-amino-3-methylimidazo [4,5-f] quinoline, and di (2-ethylhexyl)phthalate. Mol Carcinog. 2005;42(1):9–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Gi M, Fujioka M, Totsuka Y, Matsumoto M, Masumura K, Kakehashi A, et al. Quantitative analysis of mutagenicity and carcinogenicity of 2-amino-3-methylimidazo [4,5-f] quinoline in F344 gpt delta transgenic rats. Mutagenesis. 2019;34(3):279–87.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Suzuki T, Hayashi M, Ochiai M, Wakabayashi K, Ushijima T, Sugimura T, et al. Organ variation in the mutagenicity of MeIQ in big blue lacI transgenic mice. Mutat Res. 1996;369(1–2):45–9.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Ushijima T, Hosoya Y, Ochiai M, Kushida H, Wakabayashi K, Suzuki T, et al. Tissue-specific mutational spectra of 2-amino-3,4-dimethylimidazo [4,5-f] quinoline in the liver and bone marrow of lacI transgenic mice. Carcinogenesis. 1994;15(12):2805–9.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Ryu DY, Pratt VS, Davis CD, Schut HA, Snyderwine EG. In vivo mutagenicity and hepatocarcinogenicity of 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx) in bitransgenic c-myc/lambda lacZ mice. Cancer Res. 1999;59(11):2587–92.

    CAS  PubMed  Google Scholar 

  135. 135.

    Itoh T, Suzuki T, Nishikawa A, Furukawa F, Takahashi M, Xue W, et al. In vivo genotoxicity of 2-amino-3,8-dimethylimidazo [4, 5-f] quinoxaline in lacI transgenic (big blue) mice. Mutat Res. 2000;468(1):19–25.

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Masumura K, Horiguchi M, Nishikawa A, Umemura T, Kanki K, Kanke Y, et al. Low dose genotoxicity of 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx) in gpt delta transgenic mice. Mutat Res. 2003;541(1–2):91–102.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Hoshi M, Morimura K, Wanibuchi H, Wei M, Okochi E, Ushijima T, et al. No-observed effect levels for carcinogenicity and for in vivo mutagenicity of a genotoxic carcinogen. Toxicol Sci. 2004;81(2):273–9.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Okamura T, Ishii Y, Suzuki Y, Inoue T, Tasaki M, Kodama Y, et al. Enhancing effects of carbon tetrachloride on in vivo mutagenicity in the liver of mice fed 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx). J Toxicol Sci. 2010;35(5):709–20.

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Masumura K, Totsuka Y, Wakabayashi K, Nohmi T. Potent genotoxicity of aminophenylnorharman, formed from non-mutagenic norharman and aniline, in the liver of gpt delta transgenic mouse. Carcinogenesis. 2003;24(12):1985–93.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Totsuka Y, Watanabe T, Coulibaly S, Kobayashi S, Nishizaki M, Okazaki M, et al. In vivo genotoxicity of a novel heterocyclic amine, aminobenzoazepinoquinolinone-derivative (ABAQ), produced by the Maillard reaction between glucose and l-tryptophan. Mutat Res Genet Toxicol Environ Mutagen. 2014;760:48–55.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Takayama S, Nakatsuru Y, Masuda M, Ohgaki H, Sato S, Sugimura T. Demonstration of carcinogenicity in F344 rats of 2-amino-3-methyl-imidazo [4,5-f] quinoline from broiled sardine, fried beef and beef extract. Gan. 1984;75(6):467–70.

    CAS  PubMed  Google Scholar 

  142. 142.

    Sugimura T. Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. Mutat Res. 1985;150(1–2):33–41.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Ohgaki H, Takayama S, Sugimura T. Carcinogenicities of heterocyclic amines in cooked food. Mutat Res. 1991;259(3–4):399–410.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Ohgaki H, Hasegawa H, Suenaga M, Sato S, Takayama S, Sugimura T. Carcinogenicity in mice of a mutagenic compound, 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx) from cooked foods. Carcinogenesis. 1987;8(5):665–8 https://doi.org/10.1093/carcin/8.5.665.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Kawamori T, Totsuka Y, Uchiya N, Kitamura T, Shibata H, Sugimura T, et al. Carcinogenicity of aminophenylnorharman, a possible novel endogenous mutagen, formed from norharman and aniline, in F344 rats. Carcinogenesis. 2004;25(10):1967–72.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Kochi T, Shimizu M, Totsuka Y, Shirakami Y, Nakanishi T, Watanabe T, et al. A novel aromatic mutagen, 5-amino-6-hydroxy-8H-benzo [6,7] azepino [5,4,3-de]quinolin-7-one (ABAQ), induces colonic preneoplastic lesions in mice. Toxicol Rep. 2014;1:69–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS. Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis. 1995;16(1):39–52.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Ohgaki H, Matsukura N, Morino K, Kawachi T, Sugimura T, Takayama S. Carcinogenicity in mice of mutagenic compounds from glutamic acid and soybean globulin pyrolysates. Carcinogenesis. 1984;5(6):815–9.

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Kakiuchi H, Watanabe M, Ushijima T, Toyota M, Imai K, Weisburger JH, et al. Specific 5′-GGGA-3′-->5′-GGA-3′ mutation of the Apc gene in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Proc Natl Acad Sci U S A. 1995;92(3):910–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Nohmi T. Thresholds of Genotoxic and non-Genotoxic carcinogens. Toxicol Res. 2018;34(4):281–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Zeiger E. The test that changed the world: the Ames test and the regulation of chemicals. Mutat Res. 2019;841:43–8.

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    OECD. Test no. 471: bacterial reverse mutation test. Paris: OECD Publising; 2020.

    Book  Google Scholar 

  155. 155.

    Fetterman BA, Kim BS, Margolin BH, Schildcrout JS, Smith MG, Wagner SM, et al. Predicting rodent carcinogenicity from mutagenic potency measured in the Ames Salmonella assay. Environ Mol Mutagen. 1997;29(3):312–22.

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Nagao M, Ochiai M, Okochi E, Ushijima T, Sugimura T. LacI transgenic animal study: relationships among DNA-adduct levels, mutant frequencies and cancer incidences. Mutat Res. 2001;477(1–2):119–24.

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Nagao M, Fujita H, Ochiai M, Wakabayashi K, Sofuni T, Matsushima T, et al. No direct correlation between mutant frequencies and cancer incidence induced by MeIQ in various organs of big blue mice. Mutat Res. 1998;400(1–2):251–7.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Nohmi T. Past, present and future directions of gpt delta rodent gene mutation assays. Food Saf (Tokyo). 2016;4(1):1–13.

    Article  Google Scholar 

  159. 159.

    ICH. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogens M7. 2014.

    Google Scholar 

  160. 160.

    Lovell DP. Dose-response and threshold-mediated mechanisms in mutagenesis: statistical models and study design. Mutat Res. 2000;464(1):87–95 https://doi.org/10.1016/S1383-5718(99)00169-2.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Nohmi T, Tsuzuki T. Possible mechanisms underlying genotoxic thresholds: DNA repair and translesion DNA synthesis. In: Nohmi T, Fukushima S, editors. Thresholds of Genotoxic carcinogens. Amsterdam: Elsevier; 2016. p. 49–66.

    Chapter  Google Scholar 

  162. 162.

    Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, et al. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol. 2004;42(1):65–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    EFSA and WHO. Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. EFSA Support Publ. 2016;13:1–50.

    Google Scholar 

  164. 164.

    Ohta T. Mutagenic activity of a mixture of heterocyclic amines at doses below the biological threshold level of each. Genes Environ. 2006;28:181–4.

    CAS  Article  Google Scholar 

  165. 165.

    Totsuka Y, Wakabayashi K. Biological significance of aminophenyl-β-carboline derivatives formed from co-mutagenic action of β-carbolines and aniline and o-toluidine and its effect on tumorigenesis in humans: A review. Mutat Res. 2020;850–851:503148.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kenichi Masumura, National Institute of Health Sciences, Kanagawa, Japan, for allowing us to cite the latest information about new homozygous gpt delta rats and for helpful comments on the manuscript. We also thank Professor Keiji Wakabayashi, Graduate School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan, for giving us permission to cite the structural formula of heterocyclic amines from reference [6]. We appreciate Professor Yukari Totsuka, School of Pharmacy, Nihon University, Chiba, Japan, for providing us the structural formula of APNH and ABAQ and Professor Tetsushi Watanabe, Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan, for providing us the structural formula of PBTA1 and the related chemicals.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

MW and TN collected and analyzed published data. TN wrote the initial draft and MW edited the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Takehiko Nohmi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nohmi, T., Watanabe, M. Mutagenicity of carcinogenic heterocyclic amines in Salmonella typhimurium YG strains and transgenic rodents including gpt delta. Genes and Environ 43, 38 (2021). https://doi.org/10.1186/s41021-021-00207-0

Download citation

Keywords

  • Heterocyclic amines
  • Mutagenicity
  • Ames test
  • Salmonella typhimurium YG strains
  • Acetyltransferase
  • Transgenic
  • gpt delta
  • Carcinogenicity